COMPUTATIONAL & PROCESS SYSTEMS APPROACHES TO RESOLVING THE TGF-β PARADOX IN CANCER

Babatunde A. Ogunnaike

Department of Chemical Engineering,
& Center for Translational Cancer Research
University of Delaware
COLLABORATORS

• **Seung-Wook Chung** (PhD 2011, Chem Engineering)
• **Fayth Miles** (PhD 2011, Biological Sciences)
• **Carlton Cooper,**
 – Assistant Professor, Department of Biological Sciences
• **Robert Sikes, Carlton Cooper,**
 – Professor, Department of Biological Sciences
 – Director, Center for Translational Cancer Research
• **Mary C. Farach-Carson:**
 – Professor, Department of Biological Sciences
 – Former Director, Center for Translational Cancer Research
 – *(Now at the Department of Biochemistry and Cell Biology, Rice University, Houston, TX.)*
WHAT IS TRANSFORMING GROWTH FACTOR-\(\beta \)?

TGF-\(\beta \)

Receptors

Smad4

RSmad

Proliferation

Apoptosis

Differentiation

Motility

Adhesion

Angiogenesis

Immuno-surveillance

CANCER CELL
THE TGF-BETA PARADOX IN CANCER PROGRESSION*

Normal Epithelium

Changes in genetic & epigenetic context

Invasive Metastatic Cancer

Suppressor activities dominate

TGF-β responsiveness

TGF-β expression/activation

Pro-oncogenic activities dominate

Tumor Cell Autonomously
- Growth inhibition
- Apoptosis
- Genomic stability

Effects on tumor stroma
- Immunosuppression
- Angiogenesis

*Adapted from Roberts & Wakefield (2003) PNAS 100;8621-8623
Problem Statement: The TGF-β Paradox

- How can a single cytokine, TGF-β, switch roles from a tumor suppressor to a tumor promoter?

- Why is the amount of TGF-β unusually high in cancer tissues, given that TGF-β is supposed to be a tumor suppressor and growth inhibitor?
OUTLINE

I. Single Cell Modeling (TGF-β Signal Transduction)
 – Model Development, Validation and Analysis
 – Hypotheses on the dual role of TGF-β

II. Macroscopic Model (TGF-β mediated regulation of cell population)
 – Control System Block Diagram, Modeling and Analysis
 – Simulations: Potential resolution of TGF-β paradox

III. Conclusions
I. SINGLE CELL MODELING
The TGF-β Signal Transduction Model

* Chung et al. (2009) Biophys. J 96(5) 1733-1750
Quantitative Modeling and Analysis of the Transforming Growth Factor β Signaling Pathway

Seung-Wook Chung,† Fayth L. Miles,‡§ Robert A. Sikes,‡§ Carlton R. Cooper,‡§ Mary C. Farach-Carson,‡§ and Babatunde A. Ogunnaike‡§*

†Department of Chemical Engineering, ‡Department of Biological Sciences, and §Center for Translational Cancer Research University of Delaware, Newark, Delaware 19716

ABSTRACT Transforming growth factor β (TGF-β) signaling, which regulates multiple cellular processes including proliferation, apoptosis, and differentiation, plays an important but incompletely understood role in normal and cancerous tissues. For instance, although TGF-β functions as a tumor suppressor in the premalignant stages of tumorigenesis, paradoxically, it also seems to act as a tumor promoter in advanced cancer leading to metastasis. The mechanisms by which TGF-β elicits such diverse responses during cancer progression are still not entirely clear. As a first step toward understanding TGF-β signaling quantitatively, we have developed a comprehensive, dynamic model of the canonical TGF-β pathway via Smad transcription factors. By describing how an extracellular signal of the TGF-β ligand is sensed by receptors and transmitted into the nucleus through intracellular Smad proteins, the model provides quantitative insight into how TGF-β-induced responses are modulated and regulated. Subsequent model analysis shows that mechanisms associated with Smad activation by ligand-activated receptor, nuclear complex formation among Smad proteins, and inactivation of ligand-activated Smad (e.g., degradation, dephosphorylation) may be critical for regulating TGF-β-targeted functional responses. The model was also used to predict dynamic characteristics of the Smad-mediated pathway in abnormal cells, from which we generated four testable hypotheses regarding potential mechanisms by which TGF-β’s tumor-suppressive roles may appear to morph into tumor-promotion during cancer progression.
MODEL OVERVIEW

• **System of non-linear ordinary differential equations**
 – 17 state variables / 37 parameters

 ![Differential Equation Diagram](image)

 \[
 \frac{dx}{dt} = f(x, p, u)
 \]

 \[
 x(t_0) = x_0
 \]

 \[
 \hat{y} = h(x)
 \]

• **Parameter Estimation**
 – Step 1: Initial Rough Estimation
 – Step 2: Parameter Sensitivity Analysis
 – Step 3: Least Squares Fitting to Data
 – Step 4: Parameter Identifiability Test
 – Step 5: Identifiable Parameter Estimate Refinement
DATA FITTING

A: total nuclear p-Smad2*
B: total cytoplasmic p-Smad2#
C: total nuclear Smad2#
D: total cytoplasmic Smad2#
E: total nuclear Smad4#

*: Inman et al. (2002)
#: Pierreux et al. (2000)
Model Validation

- **Total cellular pSmad2**
 - Lo and Massague (1999)

- **Total cytoplasmic Smad4**
 - Pierreux et al. (2000)

- **pSmad/Smad (step input)**
 - Lin et al. (2006)

- **pSmad/Smad (pulse input)**
 - Lin et al. (2006)
In-silico Mutation of TGF-β Receptors

- **Aim**
 - To investigate system behavior under cancerous conditions

- **Specific investigations**
 - 10-fold decrease in the initial amount and production rates of TGF-β receptors (to mimic known characteristic of cancerous cells).

In-silico Mutation of TGF-b Receptors

- Reduction in receptors may induce 1) attenuated and 2) transient system responses.

TGF-β Dose-Dependent Response

- Cancer cells require more TGF-β than normal cells in order to elicit the same nuclear Smad-mediated activity.

Why is the amount of TGF-β unusually high in cancers, given that TGF-β can function as a tumor suppressor/growth inhibitor?
HYPOTHESIS: A TGF-β CONTROL SYSTEM

• Premise
 – To elicit the same nuclear Smad-mediated activity, cancer cells require *more* TGF-β than normal cells.

• Hypothesis
 – There exists a **cellular control system** that uses the tumor suppressor ligand, TGF-β, to achieve its objective of regulating cell growth.
 – This control system functions effectively in normal cells because they are responsive to the ligand.
 – With cancerous cells, the still-intact control system must secrete *more* TGF-β to achieve the level of tumor suppression attainable with normal, responsive cells.
 – Increased level of TGF-β is therefore a **consequence** of this acquired TGF-β resistance exhibited by cancer cells.
II. MACROSCOPIC MODEL OF TGF-β REGULATION OF CELL POPULATION (PROSTATE GLAND)
OVERVIEW

• **Primary Objectives**
 – To provide a quantitative explanation of the contradictory roles of TGF-β during cancer progression that is consistent with clinical observations
 – To answer the question: *Why is the amount of TGF-β unusually high in cancers, given that TGF-β can function as a tumor suppressor or growth inhibitor?*

• **Approach & Tools**
 – Mathematical Modeling and Analysis
 (within a *Process and Control System Theory* framework)

Reference:
Also In:
A Control of TGF-β Pathway

Seung-Wook Choi and Babatunde A. Ogunnaike

Abstract. Although as a tumor suppressor, TGF-β is paradoxically increased in cancer cells, the underlying mechanism is opposite of TGF-β is unchanged from cancer patients with suppressor. To provide quantitative insights, we have developed a model of TGF-β model yields as to propose a plausible explanation for the paradoxically increased level of TGF-β in β resistance), no observed correlation is consistent with the clinically transgene.
A control engineering approach to understanding the TGF-β paradox in cancer

Seung-Wook Chung¹, Carlton R. Cooper²,³, Mary C. Farach-Carson²,⁴ and Babatunde A. Ogunnaike¹,³,*

¹Department of Chemical Engineering, ²Department of Biological Sciences, and
³Center for Translational Cancer Research, University of Delaware, Newark,
DE 19716, USA
⁴Department of Biochemistry and Cell Biology, Rice University, Houston,
TX 77251, USA

TGF-β, a key cytokine that regulates diverse cellular processes, including proliferation and apoptosis, appears to function paradoxically as a tumor suppressor in normal cells, and as a tumor promoter in cancer cells, but the mechanisms underlying such contradictory roles remain unknown. In particular, given that this cytokine is primarily a tumor suppressor, the conundrum of the unusually high level of TGF-β observed in the primary cancer tissue and blood samples of cancer patients with the worst prognosis, remains unresolved. To provide a quantitative explanation of these paradoxical observations, we present, from a control theory perspective, a mechanistic model of TGF-β-driven regulation of cell homeostasis. Analysis of the overall system model yields quantitative insight into how cell population is regulated, enabling us to propose a plausible explanation for the paradox: with the tumour suppressor role of TGF-β unchanged from normal to cancer cells, we demonstrate that the observed increased level of TGF-β is an effect of cancer cell phenotypic progression (specifically, acquired TGF-β resistance), not the cause. We are thus able to explain precisely why the clinically observed correlation between elevated TGF-β levels and poor prognosis is in fact consistent with TGF-β’s original (and unchanged) role as a tumour suppressor.

Keywords: TGF-β; cancer; control theory; tissue homeostasis
MACROSCOPIC SYSTEM DESCRIPTION

• **The “Process:”** Prostate Gland (epithelial and stromal compartments)

• **Development and maintenance of function:**
 – Androgens (testosterone and dihydrotestosterone) continuously stimulate proliferation of prostate cells; inhibit apoptosis of prostatic epithelial cell
 – Androgen action in the prostate:
 ❖ Mediated through different stroma cell-derived *growth factors*
 ❖ Most important: IGF, EGF, bFGF, and TGF-β;

• **In normal prostate cells**
 – TGF-β induces differentiation,
 – inhibits prostate epithelial cell proliferation.
TGF-β-MEDIATED SYSTEM REGULATION

• Cells undergoing unusual growth
 – break basement membrane, encounter stroma: ⇒ inflammation;

• In response
 – TGF-β produced locally in latent form in the stroma;
 – Bioavailability of active TGF-β regulated by subsequent multistep process of activation

In early stages, sufficient to kill off the cells, repair the damage and promote normal healing
CONTROL SYSTEM BLOCK DIAGRAM OF TGF-β-DRIVEN REGULATION OF CELL HOMEOSTASIS

Develop component model for each block
CONTROLLED PROCESS:

CELL PROLIFERATION + DEATH

- **Cell Population Dynamics**
 - Proliferation: \(p \)
 - Death: \(d \)

- **Model Equations**
 \[
 \frac{dX}{dt} = (p(GF, TGF\beta) - d(TGF\beta)) \cdot X
 \]
 \[
 p(GF, TGF\beta) = \frac{p_a \cdot GF^r}{p_a + GF^r} - \frac{p_v \cdot TGF\beta^m}{p_v + TGF\beta^m}
 \]
 \[
 d(TGF\beta) = d_1 + \frac{d_2 \cdot TGF\beta^n}{d_3 + TGF\beta^n}
 \]
CONTROLLER: TGF-β PRODUCER CELLS

Controller Response Function

\[LLC(t) = \frac{K}{1 + e^{(C_a(C_b-X))}} \]

- **The Sources of TGF-β**
 - Bone-marrow stroma
 - Blood platelets
 - Various immune cells (e.g. macrophages, dendritic cells, T cells, B cells etc.)
Actuator: TGF-beta Activation System

- **Controller**: TGFβ Secreting Cells
- **Actuator**: TGFβ Activation System (ECM)
- **Sensor**: Growth Factors (Disturbance)
- **Controlled Process**: Total cell population (Controlled Output)
- **Integrins**
- **Proteases**
Latent TGF-β activation

Activation by integrin-mediated cell traction force (Wipff & Hinz, 2008)

Activation by proteolytic cleavage (e.g. MMPs) (Dijke & Arthur, 2007)
Actuator: TGF-β Activation System

- **Release of inactive TGF-β from the ECM**
 - Proteolysis (by proteases)
 - Cell traction force (by integrins)

- **Model Equations**

 \[
 \frac{dTGF\beta}{dt} = \frac{k_{cat1} \cdot P \cdot LLC}{K_{m1} + LLC} + \frac{k_{cat2} \cdot I \cdot LLC}{K_{m2} + LLC} - k_d \cdot TGF\beta
 \]

 \[
 P = k_p \cdot X + PRT_0
 \]

 \[
 I = k_I \cdot X
 \]
PARAMETER ESTIMATION (AN ILLUSTRATION)

Parameter: $p(GF)$

Experimental data by Deenick et al., 2003
Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_a</td>
<td>0.0531 h$^{-1}$</td>
<td>C_b</td>
<td>1.155e+5</td>
</tr>
<tr>
<td>p_b</td>
<td>1.5231 nM</td>
<td>K_p</td>
<td>1E-05 nM/cell</td>
</tr>
<tr>
<td>r</td>
<td>1.4191</td>
<td>PRT_o</td>
<td>2 nM</td>
</tr>
<tr>
<td>p_2</td>
<td>0.0531 h$^{-1}$</td>
<td>k_{cat1}</td>
<td>34.83 h$^{-1}$</td>
</tr>
<tr>
<td>p_3</td>
<td>2 nM</td>
<td>K_{m1}</td>
<td>8.5 μM</td>
</tr>
<tr>
<td>d_1</td>
<td>0.0355 h$^{-1}$</td>
<td>K_i</td>
<td>5E-06 nM/cell</td>
</tr>
<tr>
<td>d_2</td>
<td>0.0142 h$^{-1}$</td>
<td>k_{cat2}</td>
<td>8.1 h$^{-1}$</td>
</tr>
<tr>
<td>d_3</td>
<td>4.2 nM</td>
<td>K_{m2}</td>
<td>4.25 μM</td>
</tr>
<tr>
<td>K</td>
<td>20 nM/cell</td>
<td>k_{deg}</td>
<td>0.1155 h$^{-1}$</td>
</tr>
<tr>
<td>C_a</td>
<td>-4e-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SENSITIVITY ANALYSIS

- **Controlled Process**
 \[
 \frac{dX}{dt} = (p(GF, TGF\beta) - d(TGF\beta)) \cdot X \\
 p(GF, TGF\beta) = \frac{p_a \cdot GF^r}{p_a + GF^r} - \frac{p_2 \cdot TGF\beta_m}{p_3 + TGF\beta^n} \\
 d(TGF\beta) = d_1 + \frac{d_2 \cdot TGF\beta^n}{d_3^n + TGF\beta^n}
 \]

- **Controller/Sensor**
 \[
 LLC(t) = \frac{K}{1 + e^{(C_s(C_t - X))}}
 \]

- **Actuator**
 \[
 \frac{dTGF\beta}{dt} = k_{cat1} \cdot P \cdot LLC + k_{cat2} \cdot I \cdot LLC - k_d \cdot TGF\beta \\
 P = k_p \cdot X + PRT_0 \\
 I = k_i \cdot X
 \]

\[
\langle NSC_j \rangle = \left. \frac{1}{T} \int_0^T \theta_j \frac{\partial X(t, \theta)}{\partial \theta_j} dt \right|_{\theta^*}
\]

- **X**: Total cell number
- **\theta**: parameter
SIMULATIONS

• Normal Conditions
 – Step input 100 nm in GF, Nominal Controller
 – Effect of controller parameter, K, on normal response

• Pathological Conditions
 – Reduced sensitivity to TGF-β stimulation (an established characteristic of cancer cells)
 – Effected by reducing cytostatic and apopototic efficiency of TGF-β.
 – Achieved via parameters p_2 and d_2 respectively
 ❖ Range: 100% - 33.33% efficiency
 ❖ Physiologically: from fully functioning receptors to three-fold reduction in number of functional receptors.
THE RESPONSES OF NORMAL CELLS

Latent TGF-β

Active TGF-β Level (Manipulated Input)

Cell Proliferation/Death

Controlled Process

Integrins

Proteases

Growth Factors (Disturbance)

Total cell population (Controlled Output)

CONTROLLER

Latent TGF-β Level

ACTUATOR

TGFβ Secreting Cells

TGFβ Activation System (ECM)

SENSOR

CONTROLLED PROCESS

Latent TGF-β

Bioactive TGF-β

Growth factors

Total Cell population

Growth factors
THE EFFECT OF CONTROLLER PARAMETER

\[
LLC(t) = \frac{K}{1 + e^{(C_a (C_b - X))}}
\]

Simulation:
- Nominal \(K=20 \)
- High \(K=40 \)
- Low \(K=10 \)

Implication:
Abnormal alterations in immune cell physiology may affect tissue homeostasis significantly.

Simulation Results:
- Latent TGF-\(\beta \)
- Bioactive TGF-\(\beta \)
- Cell population

![Graphs of LLC, TGF-\(\beta \), and Cell population](image-url)
CANCER CELLS: REDUCED FUNCTIONAL TGF-β RECEPTOR LEVELS

- In many human cancers, abnormal alterations (e.g. mutation, deletion, downregulation) in the TGF-β receptors are frequently observed.

- Aberrant alterations in the functional TGF-β receptors lead to reduced responsiveness of the cells to TGF-β.

CANCER CELLS: REDUCED FUNCTIONAL TGF-BETA RECEPTOR LEVELS

- **Controlled Process**

\[
\frac{dX}{dt} = (p(GF, TGF\beta) - d(TGF\beta)) \cdot X
\]

\[
p(GF, TGF\beta) = \frac{p_a \cdot GF^r}{p_b + GF^r} - \frac{p_2^r \cdot TGF\beta^m}{p_3^m + TGF\beta^m}
\]

\[
d(TGF\beta) = d_1 + \frac{d_2^n \cdot TGF\beta^n}{d_3^n + TGF\beta^n}
\]

- \(p_2 \): sensitivity to the *anti-proliferative* effect of TGF-\(\beta \)
- \(d_2 \): sensitivity to the *pro-apoptotic* effect of TGF-\(\beta \)

- **Simulation of Cancer Cell Behavior**
 - Reduce \(p_2 \) & \(d_2 \) simultaneously 1.5, 2, & 3 fold, respectively.

NORMAL VS CANCEROUS

- **Cell population**
 - Normal (100%)
 - Premalignant 1 (66.7%)
 - Premalignant 2 (50%)
 - Malignant (33.3%)

- **Proteases**
 - Normal (100%)
 - Premalignant 1 (67%)
 - Premalignant 2 (50%)
 - Malignant (33%)

- **Inactive TGFβ**
 - Normal (100%)
 - Premalignant 1 (67%)
 - Premalignant 2 (50%)
 - Malignant (33%)

- **Bioactive TGFβ**
 - Normal (100%)
 - Premalignant 1 (67%)
 - Premalignant 2 (50%)
 - Malignant (33%)

Implication:
The elevated TGF-β level in late cancers is due to insensitivity of cancer cells to the anti-growth effect of TGF-β.
KEY OBSERVATION

• Under Normal Conditions
 – Controller regulates growth, inhibits proliferation effectively using tumor suppressor ligand, TGF-β

• Under Cancerous Conditions (TGF-β resistance)
 – Role of TGF-β unchanged;
 – Control system still intact;
 – But now secretes more of TGF-β in a futile attempt to achieve the level of tumor suppression attainable with normal, responsive cells.
Stability Analysis (1)

\[\frac{dX}{dt} = \left(p(GF, TGF \beta) - d(TGF \beta) \right) \cdot X = F(X) \]

\[\frac{\partial F}{\partial X} = p(TGF \beta(X_{ss})) - d(TGF \beta(X_{ss})) + X_{ss} \cdot \left(\frac{\partial p}{\partial X}_{ss} - \frac{\partial d}{\partial X}_{ss} \right) = X_{ss} \cdot \left(\frac{\partial p}{\partial X}_{ss} - \frac{\partial d}{\partial X}_{ss} \right) \]

\[= X_{ss} \cdot \left(\frac{\partial p}{\partial TGF \beta} \frac{\partial TGF \beta}{\partial X}_{ss} - \frac{\partial d}{\partial TGF \beta} \frac{\partial TGF \beta}{\partial X}_{ss} \right) \]

\[= -X_{ss} \cdot \left(\frac{p_2 p_3^m m TGF \beta_{ss}}{(p_3^m + TGF \beta_{ss})^2} + \frac{d_2^w d_3^n n TGF \beta_{ss}}{(d_3^n + TGF \beta_{ss})^2} \right) \cdot \frac{\partial TGF \beta}{\partial X}_{ss} < 0 \]

where, \[\frac{\partial TGF \beta}{\partial X}_{ss} = \frac{1}{k_{\text{deg}}} \cdot \left(\frac{k_{\text{cat}1} k_p K}{K_m (1 + e^{C_a(C_b - X_{ss})})} + K \right) \]

\[+ \frac{k_{\text{cat}1} (k_p X_{ss} + PRT_0) K K_m_1 C_a e^{C_a(C_b - X_{ss})}}{\left(K_m_1 (1 + e^{C_a(C_b - X_{ss})}) + K \right)^2} \]

\[+ \frac{k_{\text{cat}2} k_j K}{K_m (1 + e^{C_a(C_b - X_{ss})})} + K \]

\[+ \frac{k_{\text{cat}2} k_p X_{ss} K K_m_2 C_a e^{C_a(C_b - X_{ss})}}{\left(K_m_2 (1 + e^{C_a(C_b - X_{ss})}) + K \right)^2} \]

\[> 0 \]

\[\rightarrow \] The steady state of the closed-loop cell population system is always stable under nominal conditions.
Q: Under what conditions does the closed-loop system become unstable?

\[
\lim_{TGF\beta \to \infty} G = \lim_{TGF\beta \to \infty} (p - d)
\]
\[
= \lim_{TGF\beta \to \infty} \left(A - \frac{p_2^v \cdot TGF\beta^m}{p_3^m + TGF\beta^m} - \frac{d_2^w \cdot TGF\beta^n}{d_3^n + TGF\beta^n} \right)
\]
\[
= A - \left(p_2^v + d_2^w \right)
\]

where, \(A = \frac{p_a \cdot GF^r}{p_b^r + GF^r} - d_1 \)

If \(\left(p_2^v + d_2^w \right) < A \)
\rightarrow structurally unstable
(i.e. unbounded growth)

otherwise, stable
(i.e. finite cell population)

• Implication:
Treatment approach should focus on re-sensitizing cancer cells to tumor suppressive effect of the TGF-β.
ANALOGY TO TEMPERATURE CONTROL

Exothermic reactor

Temperature

Coolant addition

Time

Time

Coolant addition

Exothermic reactor

Coolant addition

Temperature
ANALOGY TO TEMPERATURE CONTROL

Resistance to the effect of the coolant
SUMMARY

• **Cellular model** provides novel insight into the system behavior under normal and cancerous conditions.
 – Nuclear complex formation between pSmad2 and Smad4 important for the accumulation of pSmad complex in the nucleus.
 – Normal and cancerous cells show different dynamic characteristics in terms of signal intensity and duration.
 – *To elicit normal nuclear Smad-mediated activity, cancer cells require more TGF-β than normal cells.*
Summary

- **Cellular model** functions as a hypothesis generating tool for elucidating the dual role of TGF-β.
 - Growth-inhibitory genes may require a higher Smad-mediated transcriptional activity for their expression than pro-oncogenic and pro-metastatic genes.
 - There exists a cellular control system that uses the tumor suppressive TGF-β to achieve its objective of regulating cell growth.

- **Macroscopic Control System Model** provides insight into plausible mechanism for counterintuitive clinical observation.
CONCLUSIONS

• Implications of Control System Model Simulation Results
 – Clinical observation is consistent with TGF-β’s role as a tumor suppressor: its level should increase in an attempt to elicit normal responses from a tumor that is becoming increasingly resistant to the cytokine

• Consequences (for how TGF-β ligand and TGF-β receptors are used as therapeutic agents)
 – Current approach (targeting TGF-β ligand therapeutically) may have to be abandoned in favor of re-sensitizing the cells to the tumor suppressive effect of the TGF-β, similar to treatment for diabetes mediated by prolonged insulin-resistance
FUTURE WORK

- **Experimental validation I (In-Vitro)**
 - Use a series of prostate cancer cell lines to test the predictions of the control system model regarding the effectiveness of TGF-β mediated regulation of cell growth and proliferation

- **Experimental validation II**
 - In-Vivo Identification of functional “controller/sensor” system.
FUTURE WORK: EXPERIMENTAL VALIDATION

Experimental Design

growth factor

Normal (e.g. PrEC)

growth factor

Pre-malignant (e.g. BPH-1)

growth factor

Malignant (e.g. LNCaP)

TGFβ

TGFβ

TGFβ
FUTURE WORK: EXPERIMENTAL VALIDATION

Hypothesized Outcomes

Normal (e.g. PrEC)

Pre-malignant (e.g. BPH)

Malignant (e.g. LNCaP)
ACKNOWLEDGEMENTS

• Professors Cooper, Farach-Carson & Sikes

• Funding
 – Institute for Multiscale Modeling of Biological Interactions (IMMMB) funded by DOE
 – DOD grant PC050554
 – NIH/National Cancer Institute P01 CA098912
 – NIH INBRE P20RR016472
 – The University of Delaware Research Foundation
QUESTIONS?