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Abstract—a novel approach is presented for control design with guaranteed transient

performance for multiple-input multiple-output discrete-time linear polytopic difference

inclusions. We establish a theorem that gives necessary and sufficient conditions for

the state to evolve from one polyhedral subset of the state-space to another. Then we

present an algorithm which constructs a time-varying output feedback law which

guarantees that the state evolves within a time-varying polyhedral target- tube

specifying the system’s desired transient performance. We present generalisations

involving constraints on the control, and a bounded additive disturbance term. Our

formulation is very general and includes reference tracking with any desired transient

behaviour in the face of disturbances, as specified, for example, by the most popular

step response specifications. The approach is demonstrated by an example involving

the control of water levels in two coupled tanks



1. Introduction



Background

• Rich control theories

• Few applications

• So for 30 years from 1987 control summit

• Math dominates control journals but poor math

• Difficult to get funding & jobs



Why so?

Negative:

• Control research in the literature has always focused on system stability, 
and related issues. Asymptotic analysis; who bother things of 10000Y?

• Another popular approach is optimization; and related issues. MPC, tuning 
facilities. “optimal” sounds great, but the objective makes sense?

• However, for real control applications, transient performance is far more 
important: a stable system with big transient errors or a very long settling 
time, is obviously unacceptable and cannot be used in practice by 
engineers. 

• One could even say that only time-domain performance specifications 
matter for real control applications. This obvious gap exists for decades 
already and is the main cause why most modern control theories are not 
adopted in industry. There has been little research on control performance 
and those on it did not address explicit time-domain performance 
specifications such as rise-time, overshoot and settling-time, see the 
literature review section in this proposal. 

• Classical designs such as pole placement and LQR fail to do so



Positive: Evidence of applicable control:

• Let us briefly review how the existing control designs handle 
performance as follows. The success that the proportional-integral-
derivative (PID) controller has enjoyed in industry (it is often 
estimated that roughly 90% of industrial control systems use PID [1]) 
is not only because it is relatively simple to implement and easy to 
tune, but also because the design philosophy often addresses 
performance specifications, such as rise time, settling-time, over-
shoot and steady-state error, though implicitly and mostly done in 
frequency domain. 

• One of PID’s shortcomings is the fact that its design does not 
explicitly take time domain performance requirements into account, 
and thus cannot ensure performance, resulting in engineers often 
resorting to their experience as well as trial-and-error when tuning a 
PID controller on line. 

• Difficult for other types of controllers; need systematical methods



State of art

• Finite time stability:

x(t0)Rx(t0)< c1    >>>   x(t)Rx(t) < c2

for t in [t0, t0 + T], c1 < c2

• The system does not get control at all

• Latest FTS works/our works: x(t) can get smaller and smaller; not 
exact transient  specifications 
– to do design

– to consider output instead of state

– to consider uncertain plants

– to consider input constraints



• Funnel Control, introduced by Ilchmann, et al. in 2002, 
[1]
– the trajectory follows some nice channel/envelop such as decay 

exponential

– applicable to various nonlinear systems

– but generally requires them to have low relative degree

– not exact transient specifications

• Prescribed performance functions, introduced by 
Bechlioulis, et al. 2008, [2].
– impose time-varying constraints as state performance requirement

– define transformation to get unconstrained system

– stabilise the new system

– not exact transient specifications



• Target Tubes : Bersekas & Rhodes, [3] and Glover & 
Sweppe, [4] from 70’s.
– Considered similar ideas, with ellipsoidal sets on the state

– allows backward computation of feedbacks

• Tube-Based Robust MPC : Mayne,[5], Rakovic, [6], 
Cannon [7], from 2000’s and later
– Find robust invariant set

– At each time instant, find a sequence that specifies the centres and 
scalings of this set over a horizon.



• Nominal system; not uncertain system

• Ellipsis case: norm based; not exact transient 
specifications

• State performance and feedback; not output

• Analytical solutions; stability alike

• No disturbance

• No input constraint

Limitations



Objectives
• This work aims at developing a new control theory to ensure transient

control performance. Given a system initiating within some set, we
want to solve the problem of driving the state/output to a desired
target set while satisfying time-varying performance constraints for all
time over a given time horizon. Its theory and algorithms will be
explored to find such solutions, see the details in the method section.
The solutions will be tested on typical industrial examples in
benchmark against the existing methods to show performance
insurance and improvement. Our project is expected to deliver a new
branch of control theory. The new theory can match actual
requirements in control applications, Furthermore, The new theory
can result in a new technology of control design and implementation
for wide applications in industry.

• 10 years ago > Last year: math PhD from France

• My presentation here



2. The proposed approach



Overview
• Time domain, discrete-time and state space control theory

• A nominal system: x0, one point in 2D, moves to another point with a specific u; then to a 
set with a control set U

• Uncertain initial state: x0 is a set, Polyhedral/多面体 set, then a set moves to another

• Uncertain system: A and B are sets, polytypic/多面体 systems; convex hull of several 
fixed matrices

• Disturbance: D is a point, and a set

• Total state transition: the initial state set is mapped (“multiplied’)  by a system mapping 
group, shifted by a disturbance set, and controlled  by the input set U

• Polyhedral control performance specifications on output

• Polyhedral constraint on input

• Numerical solution based on linear programming

• Demonstration by examples



Consider linear polytopic difference inclusions:

x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = Cx(k)

[A(k) B(k)] ∈ co{[Ai Bi]}s

P(M,m) = {x : Mx ≤ m}
X0 = P(Q,  0), initial set.
XT = P(Q,  T ), target set.
H(k) = P(Q, (k)), performance specs.



Cast performance on y to constraint on x:

y(t) <= hi(t); Cx(t) <= hi(t); 



Introduction

Our Approach

Discussion

Examples

Other Work on Guaranteed Transients

Similar Work on Tubes

Problem Formulation

Problem Formulation

Consider :

x(k + 1) = Ax(k) + Bu(k) + Dv(k)

y(k) = Cx(k)

Let P(M,m) = {x : Mx ≤ m}

X0 = P(Q, ψ0), initial set.

XT = P(Q, ψT ), target set.

H(k) = P(Q, φ(k)), performance specs.

Assume v(k) ∈ V(k) = P(V , γ(k)).

x (û,v̂ ,x0)(k) : the solution at k , x0 initial condition, û

open-loop control function, v̂ realisation of the disturbance

both defined over [0, k − 1].
6 / 24
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Traditional Step Response Specs.
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Problem Statement

x(k + 1) = Ax(k) + Bu(k) + Dv(k) (1)

y(k) = Cx(k) (2)

Problem Statement : Given the system (1)-(2) along with a time

horizon, i.e., k ∈ 0, ...,K ,K ∈ Z≥0 ; an initial set X0 ; a target set

XT ; and a time-varying set H(k) satisfying X0 ⊂ H(0),
XT = H(K ), find a time-varying state-feedback

(output-feedback), u(k , x(k)) (u(k , y(k))) such that for all

x0 ∈ X0 and all v that satisfies v(k) ∈ V(k), we have that

x (ū,v ,x0)(k) ∈ H(k) for all k ∈ {0, . . . ,K}.
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Reachable Sets

Definition (one-step reachable set)

Consider :

x(k + 1) = Ax(k) + Bu(k) + Dv(k) (3)

at time k along with a set S ⊂ R
n. The one-step reachable set

from S via equation (3) with u(k) = û(k) and v(k) ∈ V(k) is

given by

R(û(k),V(k))(S) , {x ∈ R
n : ∃x̂ ∈ S,∃v̂ ∈ V(k)

such that x = Ax̂ + Bû(k) + Dv̂}.

Let u(k) = F (k)x(k), then :

R(u(k),V(k))(S) = (A + BF (k))S ⊕ DV(k).
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Example

Specifying u(k) = F (k)x(k) at each k allows you to have

more freedom in the shaping of R(u(k),V(k))(S)
10 / 24
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Overview

Iterative estimation of reachable sets.

Given X0, find F (0) s.t. u(0) = F (0)x(0) results in

R(u(0),V(0))(X0) ⊂ H(1).
If successful, find F (1) s.t. u(1) = F (1)x(1) results in

R(u(1),V(1))(R(u(0),V(0))(X0)) ⊂ H(2).
etc...
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Main Result

A new way of over-estimating the one-step reachable set.

Theorem

Consider two polyhedral sets, P(W ,w) and P(Z , z), along with

the system (1) at an arbitrary k ≥ 0 with x(k) ∈ P(W ,w),
v(k) ∈ P(V , γ(k)) and ū(k , x(k)) = F (k)x(k). The following

holds : R(ū(k),V(k))(P(W ,w)) ⊂ P(Z , z) if and only if there

exists a matrix G(k) ≥ 0, that satisfies :

G(k)

(

W 0

0 V

)

= Z [A + BF (k) D], (4)

G(k)

(

w

γ(k)

)

≤ z. (5)
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Proof Sketch (only if)

Look at x(k + 1) = Ax(k)
x(k) ∈ P(W ,w) and x(k + 1) ∈ P(Z , z)
µi = maxx(k) ZiAx(k) s.t. Wx(k) ≤ w

Dual : µi = mingi
gT

i w s.t. gT
i W = ZiA, gT

i ≥ 0

Let Gi be a solution to dual.

µi = maxZiAx ≤ zi . But µi = Giw , thus Giw ≤ zi

Let G be matrix formed by stacking the solutions.

Consider x(k + 1) =
[

A + BF (k) D
]

[x(k) v(k)]T
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Introduce : X (k) = P(Q, ψ(k))
Recall : H(k) = P(Q, φ(k))

Optimisation Problem

(OP1)

min J (ψ(k + 1))

s.t. G(k)

(

Q 0

0 V (k)

)

= Q[A + BF (k) D], (6)

G(k) ≥ 0, (7)

G(k)

(

ψ(k)
γ(k)

)

≤ ψ(k + 1), (8)

ψ(k + 1) ≤ φ(k + 1). (9)

Inequality (9) is a new constraint. Ensures X (k) ⊂ H(k).
14 / 24
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Inputs : ψ0, V (k) ; γ(k), J (ψ(k + 1)) for k = 0, . . . ,K − 1 ;

Q(k), φ(k) for k = 0, . . . ,K

Outputs : ψ(k + 1), F (k) for k = 0, . . .K − 1, if a solution

exists.

for k = 0, . . . ,K − 1 do

attempt to find a solution to OP1

if no solution exists to OP1 then

end algorithm (without success)

else if a solution exists to OP 1 then

save F (k) and ψ(k + 1)
if k = K − 1 then

end algorithm (with success)

end if

end if

end for
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R(ū(k ,x(k)),V(k))(X (k)) ⊂ X (k + 1) ⊂ H(k + 1).
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Remark

The optimisation problem can always be rendered feasible by

the inclusion of q slack variables, ρi(k + 1) ≥ 0, i = 1, . . . ,q as

follows : replace the constraints (9) with

ψi(k + 1)− φi(k + 1) ≤ ρi(k + 1) for i = 1, . . . ,q, and replace

the cost function with J(ψ(k + 1)) + α1Tρ(k + 1), where

ρ(k + 1) , (ρ1(k + 1), ρ2(k + 1), . . . , ρq(k + 1))T and α is some

large positive number. This renders the performance

constraints “soft”.

17 / 24
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Attractive features :

If algorithm executes successfully, obtain F (k), which

works for any x0 ∈ X0.

Solving linear programs is computationally light, done

off-line.

Negative features :

No way of knowing if algorithm will execute successfully.

Wrapping effect : over-estimates grow with time.

However, this adds robustness, if algorithm executes

successfully.

We can’t include control constraints (for now).
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Mass-spring-damper

ẋ =

(

0 1

− b
m

− c
m

)

x +

(

0

1

)

u +

(

1 0

0 1

)

v ,

X0 = [−1.6,−1.7]× [0.01,0.01]
XT = [−0.1,0.1]× [−5,5]
v(k) ∈ [−0.03,0.03]× [−0.03,0.03] for k < 13, and

v(k) ∈ [−0.01,0.01]× [−0.01,0.01] for k ≥ 13

Q(k) =









1 0

−1 0

0 1

0 −1









, ψ0 =









−1.6

1.7

0.01

0.01









, ψT =









0.1

0.1

5

5









φ(k) =









h1(kTs)
h1(kTs)

5

5









,V =









1 0

−1 0

0 1

0 −1









, γ(k) =

{

(0.03)1, k < 13

(0.01)1, k ≥ 13
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Mass-spring-damper

0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2

-5

0

5

J (ψ(k + 1)) =1Tψ(k + 1)

If no solution, J (ψ(k + 1)) =1Tψ(k + 1) + 100(1Tρ(k + 1))

20 / 24



Introduction

Our Approach

Discussion

Examples

State Feedback Problem

Mass-spring-damper

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-5

-4

-3

-2

-1

0

1

2

3

4

5
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