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Introduction to KYP lemma

Facts from classical (1-D) control theory

• Frequency domain inequalities (FDI) have played a crucial role
in describing design specification for feedback control synthesis
(e.g. based on Bode or Nyquist plots).

• Due to the infinite dimensionality, however, FDIs are not directly
useful for rigorous analysis and design of control systems.

Problem

How FDIs can be formulated in the mathematical form and if it
is possible to convert them into numerically tractable

procedures?
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Introduction to KYP lemma

For linear, time invariant (LTI) systems, generally FDI can be
formulated as

G(jω)∗ΠG(jω) < 0, ∀ω ∈ R

where Π is a real symmetric matrix and

G(s) = C(sI −A)−1B +D

is a matrix valued, real-rational transfer function.

Problem

The considered inequality contains the frequency variable
⇔ infinite number of inequalities.
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KYP lemma

Let A ∈ Cn×n, B ∈ Cn×r, Θ ∈ Hn+r. If det(jωI −A) 6= 0 for any ω ∈ R
then the following two statements are equivalent

• for any ω ∈ R ∪∞[
(jωI −A)−1B

I

]∗
Θ
[

(jωI −A)−1B
I

]
≺ 0

• there exists a symmetric matrix P such that[
A B
I 0

]∗[
0 P
P 0

][
A B
I 0

]
+Θ ≺ 0.

Proof details
A. Rantzer: On the Kalman-Yakubovich-Popov lemma. Systems and Control
Letters 28(1):7–10, 1996.
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KYP lemma, cont’d

Main features

• The infinitely many inequalities parameterized by ω can be
checked by solving finite-dimensional convex feasibility problem.

• Appropriate choices of Θ allows us to represent various system
properties including positive-realness and bounded-realness.

• This standard KYP lemma treats FDIs for the entire frequency
range only and it is not completely compatible with practical
design specifications given in the finite frequency range.
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Examples for FDIs specification
Open-loop shaping

Given a SISO plant P (s), a set of specifications on the controller
K(s) is given in terms of the Nyquist plot of the open-loop transfer
function

L(s) := K(s)P (s)

to meet design requirements:

• the high-gain in the low frequency range for the sensitivity
reduction and reference tracking.

• to ensure stability margins and bandwidth maximization in the
middle-frequency range,

• the small gain (i.e. roll-off) in the high frequency range for robust
stability.
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Examples for FDIs specification
Open-loop shaping, cont’d
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Existing solutions

There are two main approaches to solve control problems in finite frequency:

1. A low/band/high-pass filter would be added to the system in series as a
weight that emphasizes a particular frequency range and then the design
parameters are chosen such that the weighted system norm is small. The
deficiencies are:

◦ the system complexity (e.g., controller order) is increased,
◦ the process of selecting appropriate weights is tedious and can be

time-consuming.

2. The frequency axis griding - FDIs are approximated by a finite number of
FDIs at selected frequency points. However, it is difficult to:

◦ determine a priori how fine the grid should be to achieve a certain
performance.

◦ impose performance guarantee in the design process as the violation
of the specifications may occur at a frequency between grid points.
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Towards generalized KYP lemma
Frequency set characterization

The frequency set is characterized by a quadratic equation and inequality of
the form

Λ(Φ,Ψ) :=
{
λ ∈ C :

[
λ
1

]∗
Φ
[
λ
1

]
= 0,

[
λ
1

]∗
Ψ
[
λ
1

]
­ 0
}

By an appropriate choice of Φ and Ψ, the set Λ can be specialized to define
a certain range of the frequency variable λ. For example, for the
continuous-time setting and low frequency range λ ∈ ΛLF , i.e.

ΛLF := {jω|ω ∈ R, |ω| ¬ $}

we have

Φ =
[

0 1
1 0

]
, Ψ =

[
−1 0
0 $2

]
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Generalized KYP lemma

Let Π, Φ, Ψ be given and let G(λ) be rational function

G(λ) := C(λI −A)−1B +D

then the parameterized inequality condition

G(λ)∗ΠG(λ) < 0, ∀λ ∈ Λ(Φ,Ψ)

holds if and only if there exist matrices P , Q � 0 such that[
A B
I 0

]∗
(Φ⊗ P + Ψ⊗Q)

[
A B
I 0

]
+ Θ ≺ 0

Proof details
T. Iwasaki, S. Hara: Generalized KYP lemma: unified frequency domain
inequalities with design applications. IEEE Trans. on Automatic Control,
50(1), 41-59, 2005.
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Finite frequency specification

It is routine to show that

|G(jω)| < γ, ∀ωl ¬ ω ¬ ωh,

is equivalent to

[
G(jω)
I

]T Π︷ ︸︸ ︷[
1 0
0 −γ2

][
G(jω)
I

]
≺ 0, ∀ωl ¬ ω ¬ ωh,

and according to GKYP lemma we have

[
A B
I 0

]T Φ⊗P+Ψ⊗Q︷ ︸︸ ︷[
−Q P+jωcQ

P+jωcQ −ωlωhQ

] [
A B
I 0

]
+
[
C D
0 I

]T
Π
[
C D
0 I

]
≺0,

where ωc=(ωl+ωh)/2.
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Can we apply 1-D (G)KYP Lemma
for solving some ILC problems?
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Iterative learning control
Definition

Iterative learning control (ILC) is based on the notion that the
performance of a system that executes the same task multiple times can be
improved by learning from previous executions (or trials, iterations, passes).

film
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Iterative learning control

A common application area is industrial robotics such as a gantry
robot executing a ‘pick and place’ task in synchronization with
a moving conveyer, where the sequence of tasks is

• collect an object from a prescribed location,

• transfer it over a finite duration,

• place it on the conveyor,

• return to the original location and,

• repeat 4 first steps as many times as required.
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Practical industrial applications of ILC

ì Industrial robots
(S. Arimoto (1984), R.W. Longman (1994), M. Norrlow (2002))

ì Rehabilitation robots
(Z. Cai, D. Tong, E. Rogers (2010))

ì Computer numerical control (CNC) machine tools
(D.-I. Kim, S.Kim (1996))

ì Wafer stage motion systems
(D. de Roover, O.H. Bosgra (2000), B.G. Dijkstra (2003))

ì Semibatch chemical reactors
(M. Mezghani, G.Roux (2002))

ì Advanced filtering and signal processing
(H. Elci, R.W. Longman, M.Q. Phan (2002))
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Learning versus non-learning control strategies

Non-learning control

u the same tracking error on each trial,

u previous iterations are information rich but they are unused.

Iterative learning control

u information from previous iterations are used,

u control performance is successively improved,

u high-performance tracking control can be achieved ,

u repetitive part of the error can be compensated.
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Problem Setup

ì Given system

xk(p+ 1) =Axk(p) +Buk(p)

yk(p) =Cxk(p), 0 ¬ p ¬ α <∞

ì Control aim: force ek(p)=r(p)−yk(p) to converge (to zero)
in the trial-to-trial direction

lim
k→∞

‖ek‖ = 0,

ì Control law uses previous trial information, e.g.

uk+1(p) = uk(p) + ∆uk(p)

∆uk(p) – modification based on the previous trial input.
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Schematic representation of ILC
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Q
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y (p)k

r(p)

e (p)k
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-

feedback loop

feedforward loop
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Finite vs. infinite trial length

Some problems can be overcame by considering the trial length to be
infinite, and then

u it enables the use of frequency domain analysis;

u if the trial length is long compared to time constant of the the
system, infinite trial length is a good approximation of the real
situation;

u a learning algorithm that converges of infinite trial length, must
also converge on finite trial length;

u it gives insight in the properties of the controller which may be
hard to obtain by finite time analysis.
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Frequency domain analysis

Simple block diagram algebra gives

ek+1(p) = Q(1− LSP )ek(p),

where SP denotes the sensitivity function

SP =
P

1 + PC
.

Also it follows immediately that error convergence occurs if

|Q(1− LSP)| < 1,∀|z| = 1

Problems:

• hard to find L such that L = S−1
P ,

• dynamics along the trial (transient response) is not considered.
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ILC with current trial feedback

Practical problems

• learning controller is not able to compensate for random disturbances,

• a plant is unstable.

Q(z)

L(z)

C(z) G(z)ek ukyd yk

fk+1

memory

-
+

+

+ +

+

fk
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ILC with current trial feedback, cont’d

Based on the block diagram

Fk+1(z) = Q(z) (Fk(z) + L(z)Ek(z))

and

Ek(z) = (I +G(z)C(z))−1Yd(z)− (I +G(z)C(z))−1G(z)Fk(z)

Hence, the previous trial error feedforward contribution (assuming
Yd(z) = 0) to the current trial error is

Ek(z) = −
[
(I +G(z)C(z))−1G(z)

]
F (z) = −SP (z)Fk(z)

where SP (z) = (I +G(z)C(z))−1G(z) denotes the sensitivity function and
the propagation of the error from trial-to-trial is

Ek+1(z) = Q(z) (I − SP (z)L(z))Ek(z)
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ILC with current trial feedback, cont’d

for ease of notation introduce

M(z) = Q(z) (I − SP (z)L(z))

and hence

Ek+1(z)− Ek(z) = M(z) (Ek(z)− Ek−1(z))

Hence the trial-to-trial error converges monotonically in k provided

‖M(z)‖∞ , sup
ω∈[−π,π]

σ(M(ejω)) < 1

and minimizing ‖M(z)‖∞ increases the convergence speed.
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ILC with current trial feedback, cont’d

General remarks

• Perfect tracking, i.e. e∞(p) = 0, 0 < p ¬ α is only achieved when
Q(z) = I.

• This choice is, however, prone to the effects of high frequency noise and
non-repeating disturbances. Hence, Q has to be chosen as a low-pass
filter.

• Perfect tracking of the reference is achieved in the specified frequency
range and attenuated over the remainder.

• Q-filter cut-off frequency should be equal or larger than the desired
close-loop bandwidth.

• Fast monotonic convergence will result if L(z) = S−1
p (z).

• Also the feedback controller C must ensure that (I +G(z)C(z))−1 ≈ 0.
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General control problem formulation

Assume Q = I and then

M(z) = I−G(z)
[
C(z) L(z)

]([ (I +G(z)C(z)) G(z)L(z)
0 I

])−1 [
0
I

]
.

M(z) can be represented as a general control configuration, where
the generalized plant P , i.e. the interconnection system of the controlled
system, is

P (z) =
[
P11(z) P12(z)
P21(z) P22(z)

]
=

 I −G(z)
0 −G(z)
I 0

 ,
or

M(z) = P11(z)+P12(z)K(z) (I−P22(z)K(z))−1
P21(z),

where K(z) = [C(z) L(z)].
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The general plant (P) is represented by

xk+1(p+ 1) =Axk+1(p) +Buk+1(p),

yk+1(p) =− Cxk+1(p),

ŷk+1(p) =ek(p),

ek+1(p) =− Cxk+1(p) + ek(p).

Also, suppose K is represented by

x̃k+1(p+ 1) =AK x̃k+1(p) +
[
BK1 BK2

][ yk+1(p)
ŷk+1(p)

]
,

uk+1(p) =CK x̃k+1(p) +
[
DK1 DK2

][ yk+1(p)
ŷk+1(p)

]
,

which results in the controller realization
K(z) = DK + CK(zI −AK)−1BK where

BK =
[
BK1 BK2

]
, DK =

[
DK1 DK2

]
.

27 z 53



ILC as linear repetitive process

The ILC dynamics can now be written asxk+1(p+ 1)
x̃k+1(p+ 1)
ek+1(p)

 =

A−BDK1C BCK BDK2

−BK1C AK BK2

−C 0 I

xk+1(p)
x̃k+1(p)
ek(p)

 .
which is a discrete linear repetitive process state-space model with current
trial state vector [x>k+1 x̃

>
k+1], zero input vector and previous pass profile ek.

The main problem: How to deal with very slow convergence since
ek+1 = −Cxk+1(p+ 1) + ek(p). Also we have a problem when the
relative degree of a plant is > 1.
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Since our plant has relative degree r, the previous trial error is shifted by r
samples to form an the anticipative feedforward control law.

• The signal fk(p) at time instant p is paired with the error signal
ek(p+ r) at time instant p+ r.

• Obviously, this is possible since the error signal from trial k is available
once this trial is complete. As a consequence this anticipative control law,
the learning controller is taken as zrL instead of L.

The generalized plant P resulting from the above modification is

P (z) =
[
P11(z) P12(z)
P21(z) P22(z)

]
=

 I −G(z)
0 −zrG(z)
I 0

 ,
where P22 includes anticipatory operator and the forward time shift is
applied to the error signal transmitted through ŷk+1.
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ILC as linear repetitive process, cont’d

Since (zI −A)(zI −A)−1 = I, then

z(zI −A)−1 = I+A(zI −A)−1.

M(z) can be rewritten as

M(z) = C(zI − A)−1B0 + D0,

where the matrices in the state-space quadruple {A,B0,C,D0} are

A =(A+BK)=
[
A−BDK1C BCK
−BK1C AK

]
, B0 =

[
BDK2

BK2

]
,

D0 =D0+CAr−1B0 =I−CAr−1BDK2,

C =CAr−1(A+BK)=
[
−CAr+CAr−1BDK1C −CAr−1BCK

]
.
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ILC scheme as a repetitive process

31 z 53



2-D Systems and Linear Repetitive Processes

N

W

a

N

/53�'

• their dynamics evolve in two separate directions,

• information along a given trial (pass), is only propagated over finite
duration - the trial length.
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Applying 2-D system theory

Define the shift operators z1, z2 in the along the trial (p) and trial-to-trial
(k) directions respectively as

ηk(p) :=z1ηk(p+ 1),

ek(p) :=z2ek+1(p)

Then the 2-D characteristic polynomial is

ρ(z1, z2) = det
([

I − z1A −z1B0

−z2C I − z2D0

])

General problem

It is hard to check stability conditions which involve two variable polynomials
(e.g. the number of poles can be infinite).
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Stability theory of repetitive processes

The stability theory of repetitive processes consists of two distinct stability
concepts

• asymptotic stability, that guarantees the existence of a limit profile
which is described by a 1-D linear system state space model,

• stability along the pass, that guarantees the existence of a limit profile
and ensures that the resulting limit profile is stable along the pass
dynamics.

Facts

• In most cases, asymptotic stability is investigated through the use of 1-D
system theory applied to the equivalent 1-D model,

• however, it turns out that asymptotic stability cannot guarantee that the
resulting pass profile has ’acceptable’ characteristic.
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Stability along the pass

Theorem
Suppose that the pair {A,B0} is controllable and the pair {C,A} is
observable. Then a discrete LRP is stable along the pass if and only if

i) ρ(D0) < 1,

ii) ρ(A) < 1,

iii) all eigenvalues of M(ejω) = C(ejωI − A)−1B0+D0, ∀ω ∈ [−π, π] have
modulus strictly less than unity.

Facts

© It is necessary and sufficient condition

© Nice in theory

§ Hard to apply
35 z 53



Stability along the pass

More facts...

• ρ(D0) < 1 - asymptotic stability condition

• ρ(A) < 1 - the first pass profile is uniformly bounded with respect to the
pass length.

• iii) means that each frequency component of the initial pass profile to be
attenuated from pass to pass.

• In practise the initial pass profiles have finite frequency spectrums rather
than in entire frequency domain.

Nyquist-based interpretation

For stable along the pass LRPs the Nyquist plot generated by (iii) lies inside
the unit circle in the complex plane.
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Stability for monotonic convergence

Tracking error converges as k →∞, iff

ρ
(
M(ejω)

)
< 1, ∀ω ∈ [−π, π].

Practical experience shows that some ILC laws have poor transients during
the convergence process even if the above condition is satisfied (e.g.
the tracking error may grow over some number of trials). To avoid these
problems, a stronger (monotonic) convergence criteria (but sufficient one) is
used

σ(M(ejω)) < 1, ∀ω ∈ [−π, π].

The above condition is more practical and commonly used in practice. Due
to the fact that

‖M(z)‖∞ , sup
ω∈[−π,π]

σ(M(ejω)),

the convergence problem for ILC algorithms is reformulated as the H∞
control problem.

37 z 53



ILC in repetitive process framework

LMI-based design procedure

Consider an ILC algorithm representation as an LRP. Then such a process is
stable along the pass, i.e. the resulting ILC algorithm is monotonically
convergent, if there exist S � 0, P � 0 and W such that

ATSA− S ≺ 0
−P −W 0 0
−WT P+ATW+WTA WTB0 CT

0 BT0 W −I DT0
0 C D0 −I

≺0

Some facts ...
• stability along the pass = monotonic convergence ;

• In practise the initial pass profiles have finite frequency spectrums rather
than in entire frequency domain.
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Application of KYP lemma

Taking G(ejω) = C(ejωI − A)−1B0+D0, KYP lemma gives[
G(ejω)
I

]∗ [
I 0
0 −I

] [
G(ejω)
I

]
≺ 0, ∀ω ∈ [−π, π],

and hence
G(ejω)∗G(ejω) ≺ I, ∀ω ∈ [−π, π],

Therefore we focus on

σ(G(ejω)) < 1, ∀ω ∈ [−π, π]

instead of true stability condition given by

ρ
(
G(ejω)

)
< 1, ∀ω ∈ [−π, π]
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Generalized KYP lemma

For Q � 0 and a symmetric matrix P[
A B0

I 0

]>
Ξ
[
A B0

I 0

]
+
[
C D0

0 I

]>
Π
[
C D0

0 I

]
≺0,

where Ξ is specified as follows:

• for the low frequency range

Ξ =
[

Ξ11 Ξ12

Ξ∗12 Ξ22

]
=
[
−P Q
Q P−2 cos(θl)Q

]
,

• for the middle frequency range

Ξ =
[

Ξ11 Ξ12

Ξ∗12 Ξ22

]
=
[

−P ej(θ1+θ2)/2Q

e−j(θ1+θ2)/2Q P−(2 cos((θ2−θ1)/2))Q

]
,

• and for the high frequency range

Ξ =
[

Ξ11 Ξ12

Ξ∗12 Ξ22

]
=
[
−P −Q
−Q P+2 cos(θh)Q

]
.
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Solving synthesis problem via LMI
Assume that the matrix variable W and its inverse are partitioned into blocks as

W =
[
X ?
U ?

]
, W−1 =

[
N ?
R ?

]
,

and define the transformation matrices F1 and F2 as

F1 =
[
X I
U 0

]
, F2 =

[
I N
0 R

]
,

where WF2 = F1 and introduce the notation

Ŵ =F>2 WF2 =
[
X I
Z> N>

]
, Â = F>2 W>AF2 =

[
X>A−B̃1C Ã

A−BDK1C AN+BC̃

]
,

B̂0=F>2 W>B0=
[

B̃2
BDK2

]
, Ĉ=CF2=

[
−CAr−1(A−BDK1C) −CAr−1(AN+BC̃)

]
,

where

Ã =X>AN −X>BDK1CN−U>BK1CN+X>BCKR+U>AKR, Z=X>N+U>R,

B̃1 =X>BDK1+U>BK1, B̃2=X>BDK2+U>BK2, C̃=CKR−DK1CN.
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ILC design in entire frequency range

Theorem
An ILC algorithm described as a discrete LRP is stable along the pass and
hence monotonic trial-to-trial error convergence occurs if there exist
matrices Ŵ , Ã, B̃1, B̃2, C̃, DK1, DK2, N , X, Z, Ŝ � 0 and a symmetric
matrix P̂ such that the following LMIs are feasible[

Ŝ − Ŵ−Ŵ> Â

Â> −Ŝ

]
≺ 0


−P̂ −̂W 0 0
−̂W> P̂+Â>+Â B̂0 Ĉ>

0 B̂>0 −I D>0
0 Ĉ D0 −I

≺0
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ILC design in entire frequency range, cont’d

Suppose that the LMIs are feasible. Then the following is a systematic
procedure for obtaining the corresponding controller matrices:

1. Compute the singular value decomposition (SVD) of Z −X>N to obtain
square and invertible matrices U1, V1 such that Z −X>N = U1Σ1V

>
1 .

2. Choose the matrices U and R as U> = U1Σ
1
2
1 , R = Σ

1
2
1 V
>
1 .

3. Compute the matrices of the ILC controller state space model using

CK =(C̃ +DK1CN)R−1,

BK1 =U−>(B̃1 −X>BDK1),

BK2 =U−>(B̃2 −X>BDK2),

AK =U−>(Ã−X>AN +X>BDK1CN+U>BK1CN−X>BCKR)R−1,

where U−> =
(
U−1

)>
=
(
U>
)−1

.
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Finite frequency ILC scheme design

• The ILC algorithm can address various frequency specifications which are
defined in chosen frequency ranges in order to ensure
◦ good convergence rate (in low frequency)
◦ low sensitivity to the sensor noise (in high frequency range)

• The choice of frequency ranges and their numbers have to be determined
according to prescribed performance, convergence rate, and robustness.

• To relax our problem it is possible to divide frequency range into H
intervals (not necessary with the same length) such that

[0, π] =
H⋃
h=1

[ωh−1, ωh],

where ω0 = 0 and ωH = π.

• The higher speed of monotonic convergence can be obtained via
optimization procedure.
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Finite frequency ILC scheme design, cont’d
Consider an ILC algorithm described as a discrete LRP. Furthermore, suppose that
the entire frequency range is arbitrarily divided into H possible different frequency
intervals. Then i) the resulting repetitive process is stable along the pass, ii) monotonic
trial-to-trial error convergence occurs and iii) the finite frequency performance

specifications are satisfied if there exist matrices Ŵ , Ã, B̃1, B̃2, C̃, DK1, DK2, N , X,
Z, Q̂h � 0, Ŝ � 0, symmetric P̂h and arbitrary chosen scalars µh such that the following
LMIs are feasible [

Ŝ − Ŵ−Ŵ> Â

Â> −Ŝ

]
≺ 0,

 −P̂h − Ŵ−Ŵ
> ejωchQ̂h−Ŵ 0 0

e−jωchQ̂h−Ŵ> P̂h−2 cos(ωdh)Q̂h+Â>+Â B̂0 Ĉ>

0 B̂>0 −µ2hI D>0
0 Ĉ D0 −I

≺0,
for all h = 1, . . . , H, where

ωch=
ωh−1+ωh
2

, ωdh=
ωh−ωh−1
2

.
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Q-filter design procedure

Some facts ...

• It is evident that for low frequencies it is (relatively) easy to obtain
σ(M(ejω)) < 1 since in this frequency range the sensitivity function
satisfies |SP (z)| ≈ 0.

• When feedback becomes less effective and |SP | ≈ 1, the learning filter L
has to be chosen as the inverse of SP .

• In particular, this means that L has to compensate unmodelled high
frequency dynamics and obviously when SP is strictly proper its exact
inverse is improper and hence this not possible for all frequencies.

• Furthermore, it implies that the convergence can be achieved for
|Q(z)| ≈ 1 over the frequency range where L approximates S−1

P well
only. Therefore, the Q filter can be chosen as the low pass filter with
cut-off frequency equal to ωH , i.e. the highest frequency for which the
result of the last Theorem is valid.
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Multi-axis gantry robot
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Gantry robot model

• Since the axes are orthogonal, it is assumed that there is minimal
interaction between them.

• Each axis of is modeled based on frequency response function (FRF)
method.

• X-axis dynamics is only considered here.

Bode Diagram
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Gantry robot model

u 7th order continuous time transfer-function has been identified.

u Discretization with 100[Hz] results in the state space model for the
X-axis

A=


0.3879 1.0000 0.2138 0 0.1041 0 0.0832
−0.3898 0.3879 0.1744 0 0.0849 0 0.0678
0 0 −0.1575 0.2500 −0.2006 0 −0.1603
0 0 −0.3103 −0.1575 −0.0555 0 −0.0444
0 0 0 0 0.0353 0.5000 0.2809
0 0 0 0 −0.0164 0.0353 −0.2757
0 0 0 0 0 0 1.0000

 , B =


0
0
0
0
0
0

0.0910

 ,
C =

[
0.0391 0 0.0146 0 0.0071 0 0.0057

]
.
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Reference trajectory to be learnt

u Pick and place process
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Figure: The reference trajectory for the X-axis. Corresponding frequency spectrum.
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Controller design

u Applying the design procedure with for two frequency ranges
(0,2)Hz and (2,10)Hz gives the learning (L) and feedback controllers
(C) as

L(z)=
78.92z7−41.7z6+24.97z5−6.26z4+4.65z3 − 1.752z2 + 0.155z−0.0124

z7+0.25z6+0.4883z5+0.3586z4+0.0621z3−0.09096z2+0.00908z−0.000768
,

C(z)=
887.8z6−694.4z5+457.5z4+45.55z3+56.35z2−3.314z+0.549

z7+0.25z6+0.4883z5+0.3586z4+0.0621z3−0.09096z2+0.00908z−0.000768
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Simulation results

A simulation of the controlled system was performed and results are

Singular Values
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The cut-off frequency of Q-filter has to be 10[Hz]
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Concluding remarks

1. GKYP lemma, enables direct loop shaping through LMI
optimization without frequency gridding or weights.

2. This allows us to solve many complex analysis and synthesis
problems in 1-D/2-D system theory through LMI-based
optimization.

3. A practical alternative is to use a 2-D systems setting where ILC
can be represented in this form with one direction of information
propagation from trial-to-trial and the other along the trial.

4. The presented approach for ILC scheme design offers advances not
possible to obtain by other known results.
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