Probability Model-Based Optimization of IVF Treatment

Babatunde A. Ogunnaike
Department of Chemical Engineering
University of Delaware

Case Study in Chapter 11

Outline

- 1. INTRODUCTION & MOTIVATION
- 2. PROBABILTY MODELING
- 3. IVF OPTIMIZATION RESULTS AND ANALYSIS
- 4. SUMMARY AND CONCLUSIONS

1. INTRODUCTION & MOTIVATION

What is In-Vitro Fertilization

http://www.youtube.com/watch?v=GeigYib39Rs

Primary Issues

- Which embryo should be selected for transfer?
- How many embryos should be transferred?
 - Too few: risk of *failure* increases
 - Too many: risk of multiple births increases
 - Objective in IVF: balance the two risks
- Current Practice
 - Transfer as many as possible, opting for improved chances of success
 - Result: too many multiple births ("Octo-Mom!")

Problem Definition

- Determine n, number of embryos to transfer,
 - To maximize the chances of obtaining a singleton,
 - And simultaneously minimize the chances of
 - *****failure and
 - **❖**of *multiple births*
- Approach
 - Mathematical modeling
 - Optimization using (validated) mathematical model

2. PROBABILITY MODELING

IVF Characteristics

- Each embryo transferred either results in a live birth (a success), or not (a failure)
- The two outcomes are mutually exclusive
- Which of the two mutually exclusive outcomes is the final result is UNCERTAIN
- The transfer of n embryos is akin to n simultaneous but independent single embryo "attempts"
- x, the number of live births resulting from the n transferred embryos is also uncertain

SAME CHARACTERISTICS AS BINOMIAL R.V.

Probability Model

• The probability of obtaining *x* live births from *n* embryos transferred:

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

- Parameter p: the single embryo probability of success (also "embryo implantation potential")
- Utility
 - Prediction
 - Analysis & Optimization

Model Prediction

 ${f TABLE~11.1:}$ Theoretical distribution of probabilities of possible outcomes of an IVF treatment with 5 embryos transferred and p=0.2

x	f(x)	$\eta(x)$
No. of live		Expected total no.
births in a	Probability	of patients (out of 1000)
delivered pregnancy	of occurrence	with pregnancy outcome x
0	0.328	328
1	0.410	410
2	0.205	205
3	0.051	51
4	0.006	6
5	0.000	0

Model Validation: Data

- From single IVF clinic
 - 42 months; 2173 patients; total of 6601 embryos

TABLE 11.2: Elsner, et al. data of outcomes of a 42-month IVF treatment study

	No. of patients receiving $n = 1, 2, 6$ embryos						
x	with pregnancy outcome x						$\eta_T(x)$
Delivered	$\eta_1(x)$	$\eta_2(x)$	$\eta_3(x)$	$\eta_4(x)$	$\eta_5(x)$	$\eta_6(x)$	Total no. patients
pregnancy	71(-)	72(-)	75(-)	74(-)	-,0(-)	-,0(-)	with pregnancy
outcome							outcome x
0	205	288	413	503	28	2	1439
1	22	97	164	207	13	1	504
2	0	17	74	84	5	1	181
3	0	0	10	32	1	0	43
4	0	0	0	6	0	0	6
5	0	0	0	0	0	0	0
Total	227	402	661	832	47	4	2173

Elsner, C.W., M.J. Tucker, C.L. Sweitzer, et al., 1997. Multiple pregnancy rate and embryo number transferred during in vitro fertilization, Am J. Obstet Gynecol., 177 (2), 350–357.

Model Validation: Data vs Model

- Parameters estimated from stratified data
 - Younger (< 36 years)</p>
 - Older (> =37 years)

TABLE 11.5: Stratified binomial model prediction of Elsner, et al. data

Delivered	Total number of patients								
pregnancy	with pregnancy outcome x								
outcome	Younger (≤ 36 yrs)		Older ($\geq 37 \text{ yrs}$)		Overall				
x	Data	$\eta_T^g(x)$	Data	$\eta_T^o(x)$	Data	$\eta_T(x)$			
0	846	816	593	566	1439	1382			
1	349	399	155	198	504	597			
2	130	118	51	43	181	161			
3	31	24	12	6	43	30			
4	3	2	3	1	6	3			
5	0	0	0	0	0	0			
Total	1359	1359	814	814	2173	2173			

Model Validation: Data vs Model

FIGURE 11.6: Complete Elsner data versus stratified binomial model prediction.

Mathematical Problem Formulation

- Three probabilities of interest
 - $-P_0=P(X=0)$: probability of unsuccessful treatment
 - $-P_1=P(X=1)$: probability of singleton
 - $-P_{MB}=P(X>1)$: probability of multiple births

$$P_{0} = (1-p)^{n}$$

$$P_{1} = np(1-p)^{n-1}$$

$$P_{MB} = 1 - (1-p)^{n} - np(1-p)^{n-1}$$

Minimize

Maximize

Minimize

• Constraint: $P_0 + P_1 + P_{MB} = 1$

Maximizing P_1 simultaneously minimizes (P_0 + P_{MB})

Mathematical Problem Formulation

Determine n to maximize

$$f_n(1) = np(1-p)^{n-1}$$

FIGURE 11.8: Surface plot of the probability of a singleton as a function of p and the number of embryos transferred, n.

Problem Solution

- Use calculus:
 - -df/dn = 0 [or d(ln f)/dn = 0]
 - Solve for n*

$$\frac{1}{n^*} = \ln\left(\frac{1}{1-p}\right)$$

Given p, the probability that a particular single embryo will lead to a successful pregnancy, the optimum number of embryos to transfer during IVF is given by the expression in Eq (11.16) rounded to the nearest integer.

Problem Solution

FIGURE 11.7: Optimum number of embryos as a function of p.

Optimized Probability of Singleton

FIGURE 11.9: The (maximized) probability of a singleton as a function of p when the optimum integer number of embryos are transferred.

Problem Solution Implications

- Results and Recommendations
 - For "Good Prognosis" patients (p>=0.5), n*=1
 - For "Medium Prognosis" patients (0.25

```
n^*=2 \text{ (for p > 0.35)}
```

$$n^*=3$$
 (for p < 0.35)

- For "Poor Prognosis" patients (p < 0.25), use formula
- Results agree with and generalize heuristics and government guidelines!

SUMMARY & CONCLUSIONS

- IVF Treatment outcome
 - x live births resulting from n embryos
 - is uncertain
- Rational IVF treatment Objective:
 - balance risk of failure against risk of multiple births
- Mathematics (probability/calculus) used to formulate and solve problem
 - Binomial Probability Model provides valid mathematical representation of reality
 - Used to determine optimum n given p
- Results agree with and generalize heuristics and government guidelines!