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Motivations

Motivations

For LTI, asymptitical stable systems, Frequency Response Function
(FRF) are useful for

System identification: parametric and nonparametric identification.
Performance and robustness characterization: frequency
resonance, phase and gain margin, Nyquist criterion.
Controller designs: frequency response compensation, frequency
response shaping.
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Motivations

Motivations

For nonlinear systems, FRF are less understood, because
The solution depends on the initial condition.
For a given input, there may exist multiple solutions.

Some approximation methods exist, such as
Describing function:

to characterize static nonlinearities (saturation, rely, dead zone,
hysteresis).
to predict the existence of limit cycle.

Generalized frequency response function: limited to second order
nonlinear systems.

In general,
No-exact FRF were defined for nonlinear systems.
Lacking frequency domain methods to analysis nonlinear systems.
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Frequency response function (FRF)

Frequency response function (FRF)
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Frequency response function (FRF)

FRF for linear system

Consider an LTI system

ẋ = Ax + Bu, x(0) = x0

y = Cx (1)

where x ∈ Rn is the state vector, u, y ∈ R is the system input and
output, respectively, A,B,C are constant matrices with appropriate
dimensions. The system is asymptotically stable, i.e., there exist
symmetric matrices P > 0 and Q > 0 such that

AT P + PA = −Q (2)
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Frequency response function (FRF)

FRF for linear system

Then under a harmonic excitation u = a sin(ωt) = Im(aeiωt) there
exists a unique steady-state solution x̄(t) = limt→∞ x(t) and is given by

x̄(t) = Im(G(iω)aeiω) = a|G(iω)|sin(ωt + argG(iω)) (3)

where G(iω) = G(s = iω) and G(s) = (sI − A)−1B is the system
transfer function.

However, this method can not be extended to nonlinear systems,
because the transfer function is not defined for nonlinear systems.
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Frequency response function (FRF)

FRF for linear system

Consider the internal model for the harmonic input:

v̇ = S(ω)v
u = Γv

where

v =

[
v1
v2

]
, S(ω) =

[
0 ω
−ω 0

]
, Γ = [1 0]

which in cascade with the LTI system

ẋ = Ax + Bu

produces the steady-state solution x̄ := α(v , ω) = Π(ω)v .
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Frequency response function (FRF)

FRF for linear system

The matrix Π(ω) cab be obtained by solving the Lyapunov equation

Π(ω)S(ω)− AΠ(ω) = BΓ (4)

Since A and S(w) have no common eigenvalues, there exists a unique
solution Π(w) for any given B and Γ, and turns to be

Π(w) = [Re(G(iω)) Im(G(iω))]

For LTI systems, this FRF depends on only the frequency w , not on the
amplitude a.
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Frequency response function (FRF)

FRF for nonlinear system

Consider an nonlinear time invariant system

ẋ = f (x ,u), x(0) = x0

y = h(x) (5)

where x ∈ Rn is the state vector, u, y ∈ R is the system input and
output, respectively, f : Rn × R→ Rn is continuously differentiable in x
and continuous in u, h : Rn → R.
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Frequency response function (FRF)

FRF for nonlinear system

Let the J(x ,u) := ∂f (x ,u)
∂x be the Jacobian of the system. Assume that

there exist symmetric matrices P > 0 and Q > 0 such that

J(x ,u)T P + PJ(x ,u) ≤ −Q, ∀x ∈ Rn,u ∈ R (6)

Then,
for any bounded input u(t), there is a unique steady-state solution
x̄(t), which is bounded.
if u(t) is produced by the harmonic internal model, then
x̄(t) = α(v ,w) is also periodic with the same period of the
harmonic input but not necessarily sinusoidal

A nonlinear system satisfying the condition (6) is called convergent
system. The function α(v ,w) is termed Frequency Response Function.
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Frequency response function (FRF)

FRF for nonlinear system

Similar to the LTI-system case, consider the internal model for the
harmonic input:

v̇ = S(ω)v
u = Γv

where

v =

[
v1
v2

]
, S(ω) =

[
0 w
−w 0

]
, Γ = [1 0]

which in cascade with the nonlinear convergent system

ẋ = f (x ,u)

produces the steady-state solution x̄ := α(v , ω).
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Frequency response function (FRF)

FRF for nonlinear system

The FRF α(v , ω) cab be obtained by solving the following nonlinear
partial equation

∂α(v , ω)

∂v
S(ω)v = f (α(v , ω), v1) (7)

In general, this function will depend on both the frequency ω and the
amplitude a, which is a fundamental property of nonlinear systems.
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Frequency response function (FRF)

FRF for nonlinear system: Summary [Pavlov et al.
(2007).]

If the system (5) is convergent, then there exists a uniformly bounded
steady-state (UBSS) solution for a certain class of harmonic inputs
u(t) = a sin(ωt) ∈ Ωu, and there exists a nonlinear function
α : R3 → Rn such that

x(t) := α(v1, v2, ω) (8)

which satisfies the following nonlinear partial equation

∂α(v , ω)

∂v
S(ω)v = f (α(v , ω), v1) (9)
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Frequency response function (FRF)

Bode plot for convergent systems

Now the output response of the system for various amplitude (a) and
frequency (ω) inputs can be represented using an amplification gain
γa,ω, which is the ratio between the maximal absolute value of the
output y at steady-state and the corresponding input signal amplitude,
so that

γa,ω =
1
a

(
sup

v2
1 +v2

2 =a2
|h (α (v1, v2, ω))|

)
=

1
a
|y(t)| (10)
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FRF based identification

FRF based identification: Problem formulation
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FRF based identification

Problem formulation

Design an identifier of the system based on the FRF such that for a
given harmonic input it can approximate the amplification gain on a
compact set.

Consider
1
a
∣∣ya,ω

∣∣ = γ̂a,ω (θ) + e (11)

where γ̂a,ω is the approximation of γa,ω, θ is the estimator tuning
parameters, and e = γ − γ̂ is the estimation error.

The design goal is to tune θ such that the error e is minimized, hence
to achieve a good estimation.
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FRF based identification Nonlinear function estimation

Nonlinear function estimation

Now the identification problem can be explicitly written in terms of FRF
estimation by taking x =

[
a ω

]T ∈ R2 and y =
∣∣y a,ω

∣∣ ∈ R.

Consider the following regression problem

y = F (x) (12)

where x ∈ Rni is the input vector, y ∈ R is the observed output, and
F : Rni → R is an unknown smooth nonlinear function. Given a set of
N observation sample data, ΩT = {xi , yi}Ni=1, we are interested in
estimating F (x), denoted as F̂ (x), by observing the data set ΩT .

We will discuss here the RBF-NN and the SVM for the nonlinear
function estimation.
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FRF based identification Radial Basis Function Neural Network (RBF-NN) Approximation

Radial Basis Function Neural Network (RBF-NN) Approximation
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FRF based identification Radial Basis Function Neural Network (RBF-NN) Approximation

RBF-NN Approximation

Consider an MIMO RBF architecture with nn hidden neurons. For an
input pattern xi , the corresponding network output is

F̂NN(xi) =
nn∑

j=1

wjφj (xi) = wTφ (xi) (13)

where xi ∈ Rni is the input vector, F̂NN is the network output,
w = [w1, . . . ,wnn ]T ∈ Rnn is the output weight vector,
φ (xi) = [φ1 (xi) , . . . , φnn (xi)]T ∈ Rnn is the vector of basis function with
φj as the response of the j-th neuron to an input.

We use the Gaussian function:

φj (xi) = exp

(
−
∥∥xi − µj

∥∥
σ2

j

)
(14)

where µj ∈ Rni and σj are the center and width of the j-th neuron,
respectively and ‖.‖ denotes the Euclidean norm.
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FRF based identification Radial Basis Function Neural Network (RBF-NN) Approximation

RBF-NN Approximation

Once the number of neurons are determined, the network parameters
(w,µ, σ) might be trained properly. The cost function based on the
estimation error for N training samples is defined as

ε =
1
N

N∑
i=1

[
yi − F̂NN(xi)

]2
(15)

Gradient descent method updates the network parameters in an
iterative manner to minimize the cost function. The iteration can be
performed by calculating the gradient of the cost function (15) with
respect to the network tuning parameters.
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FRF based identification Radial Basis Function Neural Network (RBF-NN) Approximation

RBF-NN Approximation

The weight parameter update at k -th iteration is given as

w[k + 1] = w[k ]− ηw
∂εw

∂w
(16)

where ηw is the learning rate and the gradient term can be represented
in terms of the output error as

∂εw

∂w
= − 2

N

N∑
i=1

nn∑
j=1

(
yi − wjφj (xi)

)
φ (xi) (17)
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FRF based identification Radial Basis Function Neural Network (RBF-NN) Approximation

RBF-NN Approximation

Similarly the center of the j-th neuron can be tuned as

µj [k + 1] = µj [k ]− ηµ
∂εµj

∂µj
(18)

where ηµ is the learning rate and the gradient term can be represented
in terms of the hidden layer output error as

∂εµj

∂µj
= − 2

N

N∑
i=1

φj (xi)

(
xi − µj

)
σ2

j

(
yi − wjφj (xi)

)
wj (19)
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FRF based identification Support Vector Machine (SVM) based Approximation

Support Vector Machine (SVM) based Approximation
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

Consider the SVM for estimating the unknown desired function (5)

F̂SV(xi) = wTϕ(xi) + b (20)

where F̂SV(xi) is the SVM output, w ∈ Rni is the unknown weight
vector, ϕ(xi) is some nonlinear mapping function of input data, and b is
an unknown bias term. The corresponding empirical risk function is

εemp =
1
N

N∑
i=1

[
yi − F̂SV(xi)

]
(21)
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

Different cost functions result in different SVM formulations. Vapnik
(1995) proposed ε-insensitive function which controls the width of the
ε-insensitive zone, used to fit the training data. Here the problem is to
find w and b such that the estimation error is bounded by a positive
constant ε termed as Vapink’s insensitive loss function, that is∣∣∣yi − F̂SV(xi)

∣∣∣
ε

= max
{

0,
∣∣∣yi − F̂SV(xi)

∣∣∣− ε} (22)
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

The straight forward approach to minimize the loss function (22)
consists of minimizing the weight vector, resulting in an optimization
problem. The corresponding primal problem is

min
w

1
2wTw

s.t.
∣∣yi −

(
wTϕ(xi) + b

)∣∣ ≤ ε (23)
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

Additional slack variables ξi and ξ̃i can be used to introduce different
constraints for relaxing the restrictions brought by ε, thus

min
w,ξ,ξ̃

1
2wTw + ζ

N∑
i=1

(
ξi + ξ̃i

)
∗ (24)

s.t. −
(
ε+ ξ∗i

)
≤ yi −

(
wTϕ(xi) + b

)
≤ ε+ ξi (25)

where ζ > 0 is the regularization parameter.
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

Generally, it may be difficult to solve the primal problem directly. The
dual formulation can be utilized to facilitate the resolvability. The
standard Lagrangian function is used to derive the dual problem. In
that case, one can solve the dual problem first and then derive solution
for the primal problem. The Lagrange function of the primal problem
(24) is

L =
1
2

wTw + ζ

N∑
i=1

(
ξi + ξ̃i

)
−

N∑
i=1

(
ηiξi + η̃i ξ̃i

)

−
N∑

i=1

αi
[(

wTϕ(xi) + b
)
− yi + ε+ ξi

]
−

N∑
i=1

α̃i

[
yi −

(
wTϕ(xi) + b

)
+ ε+ ξ̃i

]
(26)

where α, α̃, η, η̃ ≥ 0 are the Lagrange multipliers.
Yu Tang NLF based identification and adaptive control Octuber 10, 2017 29 / 82



FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

The minimization of the (24) is equivalent to the maximization of
minimum of its Lagrange function (26). Finding optimal condition w.r.t
the primal variables w,b, ξ, ξ̃ yields

∂L
∂w

= 0 =⇒
N∑

i=1

(αi − α̃i)ϕ(xi) = w ∗

∂L
∂b

= 0 =⇒
N∑

i=1

(αi − α̃i) = 0

∂L
∂ξ

= 0 =⇒ ζ − αi − ηi = 0

∂L
∂ξ̃

= 0 =⇒ ζ − α̃i − η̃i = 0
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

The primal variables can be now eliminated by plugging (27) in (26)
and further simplification yields the following dual problem

max
α,α̃


−1

2

N∑
i,j=1

(αi − α̃i)
(
αj − α̃j

)
K (xi ,xj)

−ε
N∑

i=1
(αi + α̃i) +

N∑
i=1

yi (αi − α̃i)

s.t.
N∑

i=1
(αi − α̃i) = 0 and αi , α̃i ∈ [0, ζ]

which is a constrained convex quadratic optimization problem.
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

Here K (xi ,xj) = ϕ (x)T ϕ (x) is termed as the Kernel function, used to
model the inputs into higher dimensional feature space, which allows to
obtain features with higher-order correlations between input variables.

There exist many Kernel functions, which satisfy the Mercer’s condition
(Smola (2004)). Here we consider the RBF given in (14) as the Kernel
function, which guarantees an adequate accuracy in the nonlinear
function estimation problems.
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

Finally, the estimation function (20) can be rewritten as follows

F̂SV(xt ) =
N∑

i=1

(α∗i − α̃
∗
i ) K (xi ,xt ) + b∗ (27)

where ()∗ indicates optimal values obtained by solving (27), xt is the
new test data, and

b∗ =
1

Nz

Nz∑
j=1

N∑
i=1

[
yj − (α∗i − α̃

∗
i )T K (xi ,xj)− ε

]
(28)

for j with 0 < α∗j , α̃
∗
j < ζ.
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FRF based identification Support Vector Machine (SVM) based Approximation

SVM based Approximation

In contrast with the choice of the number of neurons in RBF-NN case,
the number of support vectors is directly derived by solving the
optimization problem. The support vectors are the data points that lie
outside the ε-insensitive zone, thus for the points where∣∣∣yi − F̂SV(xi)

∣∣∣− ε > 0. Hence, the number of support vectors changes
for different choice of ε. Decreasing ε increases the number of support
vectors, and vice versa. In some cases such as v -SVM (Smola
(2004)), the user can specify the number of support vectors.
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FRF based identification Simulation example

Simulation example
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FRF based identification Simulation example

Simulations on a 1 DOF mechanical system

Consider a one degree-of-freedom mechanical system with a
nonlinear cubic damping term (cnl )

mq̈ + cq̇ + cnl q̇3 + kq = d (29)
y = q

It can be shown that this system is convergent. In the simulations, the
system parameters were set as: m = 1kg, c = 0.4Ns/m, k = 36N/m
and cnl = 0.8Ns3/m3.
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FRF based identification Simulation example

Simulations on a 1 DOF mechanical system

The following figure shows the forced response of the system (45),
where the solutions for different initial conditions

q1(0) = 0.3,q2(0) = 0.1,q3(0) = −0.3

converge to the unique steady-state solution exponentially. Due to this
convergence property, the FRF from the steady-state response can be
derived without concerning the initial conditions.

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

t[s]

q
[m

]

 

 

q1(0) q2(0) q3(0)

Figure: Convergence of trajectories for different initial conditions.

Yu Tang NLF based identification and adaptive control Octuber 10, 2017 37 / 82



FRF based identification Simulation example

Simulations on a 1 DOF mechanical system

The amplitude and frequency range of the input excitation:

a ∈ [0.5,6] N, ω ∈ [3,9] rad/s.

Using these inputs (a combination of 25 amplitude points and 31
frequency points), 775 data points were generated via numerical
simulation, and the Bode plot is shown in the following

3 4 5 6 7 8 92
4

6
0

0.05

0.1

0.15

 

ω[rad/s]
a[N] 

γ

0.05

0.1

0.15

Figure: Actual FRF of the system.
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FRF based identification Simulation example

Training RBF-NN

We constructed three different estimation models:
RBF1 model was trained using ΩT96, where only the output
weights are tuned.
RBF2 model was trained using ΩT208, where only the output
weights are tuned.
RBF3 model was trained using ΩT208, where both the weights and
centers are tuned.
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FRF based identification Simulation example

Training SVM

For SVM, two estimation models were constructed:
SVM1 trained using ΩT96

SVM2 trained using ΩT208
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FRF based identification Simulation example

Simulation results for RBF1
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Figure: Simulation results for RBF1.
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FRF based identification Simulation example

Simulation results for RBF2
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Figure: Simulation results for RBF2.
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FRF based identification Simulation example

Simulation results for RBF3
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Figure: Simulation results for RBF3.
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FRF based identification Simulation example

Simulation results for SVM1
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Figure: Simulation results for SVM1.
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FRF based identification Simulation example

Simulation results for SVM2
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Figure: Simulation results for SVM2.
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FRF based identification Simulation example

Training results

RBF-NN’s are sensitive to the initial values of the network
parameter.
SVM’s have less parameters need to be initialized.
SVM’s does not give rise to local minima.
A better accuracy is achieved with the SVM.
The number of iterations in SVM is much less in RBF-NN.

Model Training Speed MSE
Iteration CPU Time Training Testing

RBF1 3,500 5.16 min 2.03× 10−5 9.42× 10−5

RBF2 6,500 12.7 min 2.61× 10−5 4.62× 10−5

RBF3 11,000 19.6 min 6.04× 10−5 6.67× 10−5

SVM1 16 0.29 sec 1.00× 10−10 2.58× 10−6

SVM2 21 1.83 sec 1.02× 10−10 3.24× 10−7

Yu Tang NLF based identification and adaptive control Octuber 10, 2017 46 / 82



FRF based adaptive control

FRF based adaptive control
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FRF based adaptive control

Problem

Consider the following nonlinear time-invariant mechanical system

ẋ = f (x , τ) + Γu + Λw (31)
y = g(x) (32)

where τ is the control input, u vibration control input and w unknown
harmonic disturbance.

Depending on whether the system is convergent, following two cases
are present:

1 The open-loop system f (x ,0) is already convergent: no control
action τ is needed.

2 The open-loop system f (x ,0) is not convergent: a controller τ
needs to be designed such that the inner closed-loop system
f (x , τ) becomes convergent.

Yu Tang NLF based identification and adaptive control Octuber 10, 2017 48 / 82



FRF based adaptive control

Vibration control through FRF compensation

Let us consider a controller of form

u = −Θx (33)

where Θ ∈ Rnq×n is a state feedback controller gain matrix.

The control objective is to find a frequency response based updating
law Ψ for the controller gain

Θ̇ = Ψ(F ) (34)

where F is FRF of the system obtained for the band of interest, such
that a desired vibration attenuation is achieved for the closed-loop
system (31) without loosing the convergence property of the overall
system.
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FRF based adaptive control

Mechanical systems

Consider a mechanical system with an active controller u

Mq̈ + Cq̇ + Kq + Φ(q̇) = Γu + Λw (35)

where M, C, K are symmetric positive-definite matrices
corresponding to the mass, damping, and stiffness respectively, q̈, q̇
and q ∈ Rnq are the acceleration, velocity, and position vectors,
respectively, and Φ(q̇) : Rnq → Rnq satisfies the following assumption

ΦJ(q̇) :=
∂Φ(q̇)

∂q̇
≥ 0, Φ(0) = 0 (36)

The class of mechanical system (35) with a smooth nonlinearity that
satisfies (36) is convergent.

Yu Tang NLF based identification and adaptive control Octuber 10, 2017 50 / 82



FRF based adaptive control PD Controller Design

PD controller

Consider the PD controller

u = −Θpe −Θd ė (37)

where Θp,Θd ∈ Rnq×nq are diagonal matrices corresponding to the
proportional and derivative gains, respectively, e = q − qd corresponds
to the position error, ė = q̇ − q̇d corresponds to the velocity error, and
qd is the desired position. In active vibration control case (regulation),
the references are qd = q̇d = 0, hence (37) becomes

u = −Θpq −Θd q̇ (38)
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PD controller

The closed-loop system (35) with the PD controller (38) is

Mq̈ + Cq̇ + Kq + Φ(q̇) = Λw −Θpq −Θd q̇ (39)

which can be written in the state-space form as[
ẋ1
ẋ2

]
=

[
x2

−M−1 [ (C + Θd ) x2 + (K + Θp) x1 + Φ(x2)− Λw
] ]

(40)
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PD controller

The range of gains for which the system is convergent is defined in the
following theorem.

Theorem
Consider the class of nonlinear system (35) with a bounded external
excitation w controlled using the control law (33). If we choose the
control gains such that Θ = [Θp Θd ] ∈ ΩΘ ⊂ RΘ

+, then the closed-loop
system (39) is convergent in Ωx and the state trajectories exponentially
converge to a unique steady-state solution from any initial conditions.
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FRF based adaptive controller

The amplification gain γa,ω of the system, for a range of amplitudes
(a ∈ [a,a] ∈ Rna) and frequencies (ω ∈ [ω, ω] ∈ Rnω ) can be
represented in a matrix form as

F0 =

 γa,ω . . . γa,ω
...

. . .
...

γa,ω . . . γa,ω

 ∈ Rna×nω (41)

The above matrix can be considered as the open-loop FRF matrix of
the system. Now F0 can be analyzed in order to get a knowledge
about the critical amplitudes and frequencies of the excitation input, at
which the system possess a larger amplification gain.
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FRF based adaptive controller

One way to evaluate the FRF matrix is by finding its Frobeinus norm
(F-norm), which are sensitive towards its each elements. F-norm of the
FRF matrix F can be calculated as

‖F‖F =

√√√√ na∑
r=1

nω∑
s=1

|γr ,s|2 =
√

tr (FTF) ≥ 0 (42)
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FRF based adaptive controller

The steady-state output of the closed-loop system for a particular
value of proportional and derivative gains can be represented as
yw (t ,Θ). The amplification gain of the closed-loop system, denoted by
γa,ω (Θ), satisfies the following relation

|yw (t ,Θ)| = γa,ω (Θ) |a| (43)

Hence the peak vibration output of the system can be attenuated by
minimizing the amplification gains. Using the amplification gains
obtained under a range of excitation, the closed-loop FRF matrix, FΘ

can be constructed as given in (41). The control objective is to
minimize the FRF magnitude such that

‖FΘ‖F =

√√√√ na∑
r=1

nω∑
s=1

|γr ,s (Θ)|2 ≤ ϑ < ‖F0‖F

where ϑ is a measure of acceptable vibration range.
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FRF based adaptive controller

The new controller gains are

Θi+1 = Θi + γFiεi (44)

The above adaptation scheme is used to calculate the new controller
gains (Θi+1), based on the closed-loop system’s FRF

(
FΘ,i

)
obtained

using the previous controller gains (Θi). When the error εi is positive,
the gains will increase and for negative epsilon the gain decreases.
Based on the γ, the gains will adapt over each iteration until a
satisfactory vibration attenuation is achieved for a band of excitation,
that is ‖FΘ‖F = θ, hence εi → 0 as i →∞.
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One DOF mechanical system with a cubic nonlinearity

Consider a one DOF mechanical system with a cubic nonlinearity

mq̈ + cq̇ + ξq̇3 + kq = w (45)

where q, q̇, and q̈ the relative displacement, velocity, and acceleration
of the mass. The system parameters are set as:
m = 1kg, c = 0.4Ns/m, ξ = 0.7Ns3/m3, and k = 36N/m. All the
control actions were employed at a sampling period of 10ms.

Figure: Block diagram of the proposed active vibration control system.
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One DOF mechanical system with a cubic nonlinearity
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Figure: Convergence of trajectories for different initial conditions
(q1(0) = 0.3,q2(0) = 0.1,q3(0) = −0.3): (a) natural response
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One DOF mechanical system with a cubic nonlinearity
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Figure: Convergence of trajectories for different initial conditions
(q1(0) = 0.3,q2(0) = 0.1,q3(0) = −0.3): (b) forced response
(a = 1N and ω = 2 rad/s).
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One DOF mechanical system with a cubic nonlinearity
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Figure: Contour plot of the open-loop FRF (F0) of the mechanical system: (a)
linear case (ξ = 0)

Yu Tang NLF based identification and adaptive control Octuber 10, 2017 61 / 82



FRF based adaptive control Frequency Response based Adaptive Controller Design

One DOF mechanical system with a cubic nonlinearity
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Figure: Contour plot of the open-loop FRF (F0) of the mechanical system: (b)
nonlinear case (ξ = 0.7).
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The active control scheme can adapt to these nonlinear effects. The
closed-loop system is

mq̈ + cq̇ + ξq̇3 + kq = w − θpq − θd q̇ (46)

The effects of adaptive PD controller on the performance of the active
vibration control system are investigated. The adaptive algorithm
parameters are set as: Υ = [200 5], Θp = 0.5, Θd = 3, and
Θmin = [0.001 0.001]. The controller gains was started from a minimal
value Θt0 = Θmin, and allowed to adapt using the update law after each
set of FRF is calculated.
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Figure: Evolution of the adaptation parameters over each iteration: (a) gain.
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Figure: Evolution of the adaptation parameters over each iteration: (b) error.
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Figure: Comparison between the FRF: (a) open-loop case
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Figure: Comparison between the FRF: (b) closed-loop case.
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Figure: Time response comparison between the uncontrolled and controlled
displacements of the closed-loop system.
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Application to Satellite Attitude Control Problem

Momentum type actuators such as Reaction Wheels (RW) are widely
used as attitude control actuators in spacecraft for orbital
maneuvering. Unfortunately, these actuators are one of the main
source of on-board vibration (Masterson (2002)), which is caused by
the static and dynamic imbalances in the RW assembly. This can be
critical for the high precision space applications such as
high-sensitivity imaging and astrometry.
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Attitude model

The dynamics and kinematics of a satellite system can be modelled as

Hω̇s + S(ωs)Hωs = τ (47)

q̇ = Jsωs (48)

where H ∈ R3×3 is the inertia matrix, ωs ∈ R3 is the angular velocity
vector, S(ωs)H is the angular momentum with the skew-symmetric
matrix S(.) representing the vector cross product, τ ∈ R3 is the torque
applied to the satellite system, q ∈ R3 is the satellite attitude vector,
and Js(ωs) ∈ R3×3 is the Jacobian matrix, all expressed in the satellite
body frame. The Modified Rodrigues parameters were used to
represent the kinematic equations of the satellite system.
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Attitude model

By considering q and q̇ as the state-space coordinates and using (48),
the equation of motion of the satellite system (47) can be written in the
Lagrangian form as

Hs(q)q̈ + Cs(q, q̇)q̇ = us (49)

where

Hs(q) = J−T
s HJ−1

s

Cs(q, q̇) = J−T
s HJ−1

s J̇sJ−1
s − J−T

s S(ωs)HJ−1
s

us = J−T
s τ

Since the system (49) verifies the structure and skew-symmetric
property (Slotine (1990)), it satisfies the theoretical analysis.
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Disturbances

The rotational elements of the RW generates periodic disturbances,
which can be modelled as a series of discrete harmonics Masterson
(2002)

wrw =
h̄∑

l=1

ãlν
2 sin (2πhlνt + ϕl) (50)

where h̄ is the total number of harmonics, ãl is the amplitude
coefficient of the l-th harmonic, ν is the wheel speed, hl is the l-th
harmonic number and ϕl is a random phase. Now the satellite model
with the disturbance wrw can be represented as

Hω̇s + S(ωs)Hωs = τ + u + Λwrw (51)

where u is generated by the proposed FRF-based adaptive control
algorithm for minimizing the vibration signals caused by the RW
assembly.
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The block diagram of the implementation of the proposed algorithm is
shown

Figure: Block diagram of the active vibration control system for satellites.
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Figure: Evolution of the adaptive gains over each iteration: (a) proportional
gain
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Figure: Evolution of the adaptive gains over each iteration: (b) derivative gain.
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Figure: Error of the satellite attitude in the presence of disturbance without
adaptive controller: (a) position error.
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Figure: Error of the satellite attitude in the presence of disturbance without
adaptive controller:(b) velocity error.

Yu Tang NLF based identification and adaptive control Octuber 10, 2017 78 / 82



FRF based adaptive control Application to Satellite Attitude Control Problem

0 50 100 150 200
−1

−0.5

0

0.5

t[s]

e

 

 
e1
e2
e3

Figure: Error of the satellite attitude in the presence of disturbance with
adaptive controller: (a) position error
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Figure: Error of the satellite attitude in the presence of disturbance with
adaptive controller:(b) velocity error.
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Conclusions

Conclusions

The frequency response function (FRF) has been extended to the
class of nonlinear convergent systems.
Identification for this class of nonlinear system is done by
estimating the FRF.
Adaptive vibration control is designed by minimizing the FRF from
the disturbances to the output.
Satellite attitude control is taken as an illustrating example.
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Conclusions

THANKS!
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