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Introduction

e Extremum-seeking control (ESC) has been the subject of
considerable research effort over the last decade.
e Mechanism dates back to the 1920s [Leblanc, 1922]
» Objective is to drive a system to the optimum of a measured
variable of interest [Tan et al., 2010]
@ Revived interest in the field was primarily sparked by Krstic and
co-workers [Krstic and Wang, 2000|

» Provided an elegant proof of the convergence of a standard
perturbation based ESC for a general class of nonlinear systems



Introduction

Basic ESC objectives:

e Given an (unknown) nonlinear dynamical system and (unknown)
measured cost function:

z = f(x,u) (1)
= h(z) (2)

@ The objective is to steer the system to the equilibrium z* and u*
that achieves the minimum value of y(= h(z*)).



Basic ESC Loop
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Figure: Standard ESC Loop.




Introduction

e The stability analysis [Krstic and Wang, 2000]| relies on two
components:

@ an averaging analysis of the persistently perturbed ESC loop
@ a time-scale separation of ESC closed-loop dynamics between the
system dynamics and the quasi steady-state extremum-seeking task.
e This analysis shows that the tuning parameters of the ESC must
be chosen very carefully to guarantee convergence to a
neighbourhood of the unknown optimum.



Proportional Integral ESC

Limitations associated with the two time-scale approach to ESC
remains problematic.

e Two (or more) time-scale assumption is required to ensure that
optimization operates at a quasi steady-state time-scale

o Convergence is very slow.
e Limits applicability in practice.
Improvement in transient performance has been widely studied:

@ An observer-based fast extremum seeking control approach is
proposed in Moase and Manzie [2012]

o Newton-seeking Ghaffari et al. [2012], Moase et al. [2010], Liu and
Krstic [2014]

o Lie-bracket averaging analysis Diirr et al. [2013]



Objectives

@ The main objective of this study is to propose an ESC that
removes the need for time-scale separation.

» Technique utilizes a standard perturbation based approach.
@ The proposed controller has two modes:

» Proportional control
» Integral control

@ The main contribution is two-fold:

» Minimize impact of time-scale separation on transient performance.
» Achieve stabilization of unknown nonlinear system to optimum.



Problem Definition

@ The objective is to steer the system to the equilibrium z* and u*
that achieves the minimum value of y(= h(z*)).

» The equilibrium (or steady-state) map is the n dimensional vector
7(uw) which is such that:

f(m(u),u) =0.

» The equilibrium cost function is given by:

» The problem is to find the minimizer u* of y = ¢(u*).
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Proportional Integral ESC

Assumption 1

The cost h(x) is such that

o 8h8(:*) -0

Assumption 2

The cost h(x) has strong relative degree one.

By Assumption 2, the unknown dynamics can be decomposed as:

£=0(&y)
Y= th+Lghu

where ¢ € R"™! ¢ is a smooth vector valued function of ¢ and y = h(z).

10 /53




Proportional Integral ESC

Assumption 3
The normal form dynamics are such that:
e there exists a function W () such that:

Billz — 7 (@)|* < W (&) + h — h(n(a)) < Bolla — m(@)|

for positive constants 81, B2 and there exists a nonnegative
constant k* such that
ow . . .
87£¢>(€,y) + Lih — k*||Lgh||* + Lghit < —a3|lz — =(@)|?

for a positive constant az > 0, Vx € D(u*) and Vu € U.

@ This describes a class of minimum phase stabilizable nonlinear
systems.



Proportional Integral ESC

Assumption 4

The equilibrium steady-state map ¢(u) is such that
Vol(u)(u —u*) > ayllu — u*||?

for some positive constant a,, Yu € U.

e Local convexity of the steady-state cost around u*.




Proportional Integral ESC

e Proposed PI-ESC algorithm:

&= f(z) +g(x)u

V=—wpv+y
. 1
U = ——(—wiv 4 wyy) sin(wt)
TI
u =

e Tuning parameters:

» k and 77 are the proportional and integral gain
» a w are the dither amplitude an frequency
» wp(>> w) is the high-pass filter parameter.

— 2 (—wiv + wpy) sin(wt) + 4 + asin(wt).
a
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Proportional Integral ESC

J; @ WhS

S+ wp,

sin(wt) L sin(wt



Proportional Integral ESC

Theorem 1

Consider the nonlinear closed-loop PIESC system with cost function
y = h(x). Let Assumptions 1, 2, 3 and 4 hold. Then

Q there exists a 77 such that for all 7; > 77 the trajectories of the
nonlinear system converge to an O(1/w) neighbourhood of the
unknown optimum equilibrium, z* = 7(u*),

@ there exists w* > 0 such that, for any w > w*, the unknown
optimum is a practically stable equilibrium of the PIESC system
with a region of attraction whose size grows with the ratio ¢,

@ |z — 2*| enters an O(1) + (9( ) +0(2) neighbourhood of the
origin and ||& — u*|| enters an (’)(w) + (’)( )+ O(5;) of the
origin.

wartr




Proportional Integral ESC

Proof of theorem demonstrates that:

» the proportional action minimizes the impact of the time scale
separation

» the integral action acts as a standard perturbation based ESC

» Combined action guarantees stabilization of the unknown
equilibrium

» With fast convergence

Impact of dither signal is inversely proportional to the frequency

Size of ROA is proportional to .

PIESC acts as a dynamic output feedback nonlinear
controller.
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Example 1

We consider the following dynamical system:
T1=—T1+u

The cost function to be minimized is given by: y = 1 + 4(z; — 1.2)2.

e the optimum cost is y* = —1.25 and occurs at 7 = 1.2, u* = 1.2
@ The tuning parameters are chosen as: a = 5, w = 100, k = 0.5,
71 = 1 with wy, = 1000.

o Compared to standard ESC with a =5 , w = 100, w; = 150,
wp, = 100 and 77 = 0.05.



Example 1
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Figure: Standard ESC.



Example 2

We consider the following dynamical system taken from Guay and
Zhang [2003]:

T1 ::1:%+x2+u

io = — xa + 2%
The cost function to be minimized is given by: y = —1 — 21 + 2.
e the optimum cost is y* = —1.25 and occurs at u* = —0.5, 2] = 0.5,

x5 =0.25

@ The tuning parameters are chosen as: k = 10, 771 = 0.1, a = 10,
w = 100 with wy, = 1000.

e Outperforms the model-based approach of Guay and Zhang [2003]



Example 2
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Proportional Integral ESC

e Higher order output dynamics (subject to stable zero dynamics).

o Use measured derivatives of cost to synthesize a rel. order one cost.

e.g. Relative order 2 dynamics:

§ = Lgh, §j = Lih+ LyLghu.

where LyLsh # 0 Vo € D(u)/x*. Assume that z; = 7 is available for
measurement. The cost function for PI-ESC becomes:

H(z) = h(z) + %zg.



Example 3

Consider the following system

T1 =x2
Tg =T3
T3 = — 1 — 3x2 — 3x3 + 0.5u

with the following cost function: y = 1+ 4(z; — 1.2)%.
o Consider the extended cost: Y =y + (y + %)% + 2y + v + )

e Tuning parameters: a = 20, w = 20, wp, = 100, k£ = 0.2 and 77 = 15.

e The initial conditions are x1(0) = z2(0) = x23(0) = u(0) = 0.



Example 3
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Example 3

Consider the following unicycle system

&1 =ucos(z3)
T9 =usin(zs)

r3 =0

with the following cost function: y = %x% + 23

@ Tuning parameters: a = 5, w = 200, wy = 1000, £ = 2 and 77 = 10.
e The initial conditions are x1(0) = 22(0) = 2, z3(0) = 0, 4(0) = 0.

e We consider a constant angular velocity v = y/w.



Example 4
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Example 5

@ Approach can be applied to time-varying RTO problems.
Consider the nonlinear system:
1 = 0521 + 0.156% +u

with the following cost function: y = 1 + 4(z; — 1.2 — 0.2sin(2t))?.

o Tuning parameters: a = 10, w = 100, wy, = 1000, k =4 and 77 = 1.

@ The initial conditions are 21(0) = 0, 4(0) = 0.



Example 5
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Proportional-Integral ESC with delay compensation

@ Delay systems with known delay can be treated.
e Strategy is to compensate for phase change in dither signal

U T =f(x,u) s Y
AN
y =h(z)
U 1
718
WhS
.
S + wh
k
. 1 .
—— asin(wt) = sin(wt — wb)
a

28 /53



Example 6

Consider the following system
&1 = 0.5z1 + 0.12% + u

with the following cost function: y = 1 + 4(z1(t — ) — 0.2)%.

e 6=0.5

e Tuning parameters: A = 10, w = 100, wp = 1000, £ = 0.5 and
71 = 10.

e The initial conditions are x1(0) = 1, 4(0) = 0.
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Example 6
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ESC Observer design: Motivation

@ The design of observers remains a challenge in nonlinear systems

e Very few design techniques exist:
» Differential geometric techniques: yield design subject to
restrictive assumptions
» Optimization based techniques: not reliable for real-time
implementation for nonlinear systems
» Particle filtering: computationally inefficient due to sampling
with no provable convergence

@ Objective is to propose a new alternative observer design that
exploits the PI extremum-seeking control approach.



PIESC for observer design

We consider a class of nonlinear systems of the form:
i = f(z) (4)
= h(x) (5)
where
o x € R"™ is the vector of state variables,

@ y € R is the output variable available for measurement.

e f(x) and h(z) are smooth vector valued functions of x.
Assumption

The system (4), (5) is observable.




PIESC observer design

o We consider the cost
V = L (h(x) — h(#))* (6)
o Proposed PIESC observer:
o= 1)+ K@) - @) 7
K = —alTIVD(w) (8)
K(t) = f%VD(w) +aD(w) + K ()

e Aims to minimize V' by manipulation of the observer gain K (t).

o V is estimated using a high-pass filter.

33 /53



PIESC observer

Tuning parameters are:

k4 is the proportional gain.

77 is the integral constant.

D(w) = [sin(w1t), ..., sin(wyt)]
w; are positive constants such that

(1] w‘ are rational,

Q wlgéwj for ¢ # j and
Q wi # w; +wj
forall i, jand k € [1, ..., n].



PIESC observer

Analysis proceeds in three steps:

@ Averaging of the error dynamics e =z — &:

é=f(z) — f(&) — K(t)(h(z) — h(Z))

K= VD(w)
aTr
K(t)=- %VD(w) +aD(w) + K;

@ Stability analysis of the averaged system,

@ Averaging analysis to compute deviation of the real system from
the averaged system:

lean(t) — e(®)]|* < Ba, kg, 71, D(w))



PIESC observer: LTI system analysis

e First focus on observable LTI systems

o PIESC observer:

S
Il

Ai+ K(t)C(z — &)
K = —alTIVD(w) (10)
K(t) = —%VD(UJ) +aD(w) + K;.

where V = (Ce)>.

e Error dynamics:

¢ = Ae— K(t)Ce (11)
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PIESC observer: LTI averaged system

e Averaged error dynamics yields:

éar =UA — K;C)egy — al'(Cegy)eqy

. Cegy a
Kiav:_ FCav A_Kiafuc av 7F0av av
o0 == I (Cew)(A ~ Ko C)ean + it T(Cen)e

e For C' =1,0,...,0] (Wlog) we have:
1+¢1 ky C’eav o ... |
%7 (Ceaw) 0 ... 0
Q= EEIZ"; Ceay)? g 1 ... 0

/_\

| e ( 7‘7)(0&@) 00 1

and

I(Ceqy) = k(c)m ~ ).



PIESC observer: LTI averaged system

e The functions ; given by:

1
V1—o2 B

_ LN W B S SR
¢3(U)_3<\/1—U2 1) J2< 1— o2 ! 20)
_ LR I S S I
¢5(“)5<m 1) 02(m ! 2")
16 1 L1l 3,
+a4(\m‘ 27 78 >

arise from the averaging of the error dynamics.

’gZJl(O'): 1

@ They are related to Chebyshev polynomials of the third kind:
» Each subscript is associated with the choice of frequencies.

» (o) are positive definite for r = 4k +1for o2 <1, k=0,1,2,...
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PIESC observer: LTI averaged system

Resulting observer is reminiscent of Chandrasekhar-type algorithms
(Kailath [1972], Lindquist [1974])
e Observer (and LQR control) without the need for the solution of
Riccati equations.

Theorem

Consider the average error dynamics with average gain updates. Then
there exists kg, a, 71 and a set of frequencies (w;) such that the origin is
an asymptotically stable equilibrium for all eq,(0) with (Ceq(0))? < 1.

e By averaging analysis with w; as a perturbation parameter. We
get:

Theorem

Consider the PIESC observer error dynamics and PI gain update. Then
there exists kg, a, 71 and a set of frequencies (w;) such that the
estimation error dynamics enter an O(1/wy) neighbourhood of the

origin asymptotically. s




Example 1

Consider the dynamical system:
&y = x2, Ty = —x1 + a3, &3 = —T2 + T3, Ty = —T3

It is assumed that y = x; is available for measurement. We apply the
proposed ESC observer with A = 20, k;, = 10, 77 = 0.001 and the dither
signal

D(w)" = [ sin(25¢t) sin(125¢) sin(225¢t) sin(325¢) | .
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Example 1
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Design of nonlinear observers

@ Analysis of the PIESC nonlinear observer is considerably more
difficult.

» Follows the same steps as the linear observer design analysis.

» But resulting averaged nonlinear error dynamics show that the
PIESC formulation provides access to elements that are not
measured: e.g. %(m)

@ Approach works for systems with "averaged" Lipschitz properties
(potential to handle discontinuous dynamics).

e Provides a general observed design for observable nonlinear
systems.



Example 2

Consider the dynamical system (Andrieu et al. [2009]):

. L1X2
T, = —uzx
! Kyr1 + 22 !
12
- 1—
xT9 szl T o + u( xg)
where
u(t) = 0.41 t < 10, 0.02 10 <t <20,
1 06 20<t<35 0.1 > 35.
e Objective is to estimate xo and K, using y = z;.

o Problem not solvable using high-gain observer techniques

Use frequencies wy = 25, wy = 125, w3 = 5.

Tuning parameters are k, = 1, 77 = 0.01, a = 30.



Example 2
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Example 2
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Example 3

Consider the bioreactor system with Monod kinetics:

. 12
T = ———ux
! Ks+ o !
. 122
= 1—
T2 Ks i o -+ U( $2)
where
u(t) = 0.41 t < 10, 0.02 10 <t <20,
1 0.6 20<t<35 0.1 > 35.
e Objective is to estimate z; and K using y = x».

Problem requires slow (asymptotic) observers

Use frequencies wy = 25, wy = 125, w3 = 5.

Tuning parameters are k, = 1, 77 = 0.01, a = 30.



Example 3

T — 1
o
T=

o

=
>
’

48



Example 3
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Conclusions

@ A proportional-integral ESC structure is developed to eliminate
time-scale separation

» Proportional action provides quick transient response
» Integral action computes the correct optimal steady-state

e Shown to stabilize a class of minimum phase nonlinear systems to
a neighbourhood of the unknown optimum.

@ Proposed a systematic PI ESC observer approach was a large class
of detectable nonlinear systems.
Future and Ongoing Work:

o Study extension to nonminimum phase cost dynamics and unstable
dynamics

o Generalize to discrete-time dynamics

@ Application in distributed optimization over networks of dynamic

local agents.
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