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Introduction

Extremum-seeking control (ESC) has been the subject of
considerable research effort over the last decade.
Mechanism dates back to the 1920s [Leblanc, 1922]

I Objective is to drive a system to the optimum of a measured
variable of interest [Tan et al., 2010]

Revived interest in the field was primarily sparked by Krstic and
co-workers [Krstic and Wang, 2000]

I Provided an elegant proof of the convergence of a standard
perturbation based ESC for a general class of nonlinear systems
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Introduction

Basic ESC objectives:
Given an (unknown) nonlinear dynamical system and (unknown)
measured cost function:

ẋ = f(x, u) (1)
y = h(x) (2)

The objective is to steer the system to the equilibrium x∗ and u∗

that achieves the minimum value of y(= h(x∗)).
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Basic ESC Loop

!l

s + !l

s

s + !h

ẋ =f(x, u)

y =h(x)

Figure: Standard ESC Loop.
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Introduction

The stability analysis [Krstic and Wang, 2000] relies on two
components:

1 an averaging analysis of the persistently perturbed ESC loop
2 a time-scale separation of ESC closed-loop dynamics between the

system dynamics and the quasi steady-state extremum-seeking task.

This analysis shows that the tuning parameters of the ESC must
be chosen very carefully to guarantee convergence to a
neighbourhood of the unknown optimum.
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Proportional Integral ESC

Limitations associated with the two time-scale approach to ESC
remains problematic.

Two (or more) time-scale assumption is required to ensure that
optimization operates at a quasi steady-state time-scale
Convergence is very slow.
Limits applicability in practice.

Improvement in transient performance has been widely studied:
An observer-based fast extremum seeking control approach is
proposed in Moase and Manzie [2012]
Newton-seeking Ghaffari et al. [2012], Moase et al. [2010], Liu and
Krstic [2014]
Lie-bracket averaging analysis Dürr et al. [2013]
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Objectives

The main objective of this study is to propose an ESC that
removes the need for time-scale separation.

I Technique utilizes a standard perturbation based approach.
The proposed controller has two modes:

I Proportional control
I Integral control

The main contribution is two-fold:
I Minimize impact of time-scale separation on transient performance.
I Achieve stabilization of unknown nonlinear system to optimum.
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Problem Definition

The objective is to steer the system to the equilibrium x∗ and u∗
that achieves the minimum value of y(= h(x∗)).

I The equilibrium (or steady-state) map is the n dimensional vector
π(u) which is such that:

f(π(u), u) = 0.

I The equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)

I The problem is to find the minimizer u∗ of y = `(u∗).
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Proportional Integral ESC

Assumption 1
The cost h(x) is such that

1 ∂h(x∗)
∂x = 0

Assumption 2
The cost h(x) has strong relative degree one.

By Assumption 2, the unknown dynamics can be decomposed as:

ξ̇ = φ(ξ, y)

ẏ = Lfh+ Lghu

where ξ ∈ Rn−1, φ is a smooth vector valued function of ξ and y = h(x).
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Proportional Integral ESC

Assumption 3
The normal form dynamics are such that:

there exists a function W (ξ) such that:

β1‖x− π(û)‖2 ≤W (ξ) + h− h(π(û)) ≤ β2‖x− π(û)‖

for positive constants β1, β2 and there exists a nonnegative
constant k∗ such that

∂W

∂ξ
φ(ξ, y) + Lfh− k∗ ‖Lgh‖2 + Lghû ≤ −α3‖x− π(û)‖2

for a positive constant α3 > 0, ∀x ∈ D(u∗) and ∀û ∈ U .

This describes a class of minimum phase stabilizable nonlinear
systems.
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Proportional Integral ESC

Assumption 4
The equilibrium steady-state map `(u) is such that

∇u`(u)(u− u∗) ≥ αu‖u− u∗‖2

for some positive constant αu ∀u ∈ U .

Local convexity of the steady-state cost around u∗.
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Proportional Integral ESC

Proposed PI-ESC algorithm:

ẋ = f(x) + g(x)u

v̇ = −ωhv + y

˙̂u = − 1

τI
(−ω2

hv + ωhy) sin(ωt)

u = −k
a

(−ω2
hv + ωhy) sin(ωt) + û+ a sin(ωt).

Tuning parameters:
I k and τI are the proportional and integral gain
I a ω are the dither amplitude an frequency
I ωh(>> ω) is the high-pass filter parameter.
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Proportional Integral ESC

ẋ =f(x, u)

y =h(x)

1
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Proportional Integral ESC

Theorem 1
Consider the nonlinear closed-loop PIESC system with cost function
y = h(x). Let Assumptions 1, 2, 3 and 4 hold. Then

1 there exists a τ∗I such that for all τI > τ∗I the trajectories of the
nonlinear system converge to an O(1/ω) neighbourhood of the
unknown optimum equilibrium, x∗ = π(u∗),

2 there exists ω∗ > 0 such that, for any ω > ω∗, the unknown
optimum is a practically stable equilibrium of the PIESC system
with a region of attraction whose size grows with the ratio a

k ,
3 ‖x− x∗‖ enters an O( 1

ω ) +O( k
ωa) +O( aω ) neighbourhood of the

origin and ‖û− u∗‖ enters an O( 1
ω ) +O( 1

ωaτI
) +O( a

τIω
) of the

origin.
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Proportional Integral ESC

Proof of theorem demonstrates that:
I the proportional action minimizes the impact of the time scale

separation
I the integral action acts as a standard perturbation based ESC
I Combined action guarantees stabilization of the unknown

equilibrium
I With fast convergence

Impact of dither signal is inversely proportional to the frequency
Size of ROA is proportional to a

k .
PIESC acts as a dynamic output feedback nonlinear
controller.

16 / 53



Example 1

We consider the following dynamical system:

ẋ1 = −x1 + u

The cost function to be minimized is given by: y = 1 + 4(x1 − 1.2)2.

the optimum cost is y∗ = −1.25 and occurs at x∗1 = 1.2, u∗ = 1.2

The tuning parameters are chosen as: a = 5, ω = 100, k = 0.5,
τI = 1 with ωh = 1000.
Compared to standard ESC with a = 5 , ω = 100, ωl = 150,
ωh = 100 and τI = 0.05.
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Example 1
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Figure: PIESC
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Example 2

We consider the following dynamical system taken from Guay and
Zhang [2003]:

ẋ1 =x21 + x2 + u

ẋ2 =− x2 + x21

The cost function to be minimized is given by: y = −1− x1 + x21.

the optimum cost is y∗ = −1.25 and occurs at u∗ = −0.5, x∗1 = 0.5,
x∗2 = 0.25

The tuning parameters are chosen as: k = 10, τI = 0.1, a = 10,
ω = 100 with ωh = 1000.
Outperforms the model-based approach of Guay and Zhang [2003]
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Example 2
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Proportional Integral ESC

Higher order output dynamics (subject to stable zero dynamics).
Use measured derivatives of cost to synthesize a rel. order one cost.

e.g. Relative order 2 dynamics:

ẏ = Lfh, ÿ = L2
fh+ LgLfhu.

where LgLfh 6= 0 ∀x ∈ D(u)/x∗. Assume that z2 = ẏ is available for
measurement. The cost function for PI-ESC becomes:

H(x) = h(x) +
1

2
z22 .
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Example 3

Consider the following system

ẋ1 =x2

ẋ2 =x3

ẋ3 =− x1 − 3x2 − 3x3 + 0.5u1

with the following cost function: y = 1 + 4(x1 − 1.2)2.

Consider the extended cost: Y = y + (y + ẏ)2 + (2y + ẏ + ÿ)2

Tuning parameters: a = 20, ω = 20, ωh = 100, k = 0.2 and τI = 15.
The initial conditions are x1(0) = x2(0) = x3(0) = û(0) = 0.
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Example 3
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Example 3

Consider the following unicycle system

ẋ1 =u cos(x3)

ẋ2 =u sin(x3)

ẋ3 =v

with the following cost function: y = 1
2x

2
1 + x22.

Tuning parameters: a = 5, ω = 200, ωh = 1000, k = 2 and τI = 10.
The initial conditions are x1(0) = x2(0) = 2, x3(0) = 0, û(0) = 0.
We consider a constant angular velocity v =

√
ω.
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Example 4
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Example 5

Approach can be applied to time-varying RTO problems.

Consider the nonlinear system:

ẋ1 = 0.5x1 + 0.1x21 + u

with the following cost function: y = 1 + 4(x1 − 1.2− 0.2 sin(2t))2.

Tuning parameters: a = 10, ω = 100, ωh = 1000, k = 4 and τI = 1.
The initial conditions are x1(0) = 0, û(0) = 0.
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Example 5
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Proportional-Integral ESC with delay compensation

Delay systems with known delay can be treated.
Strategy is to compensate for phase change in dither signal

ẋ =f(x, u)

y =h(x)

1

⌧Is

k

!hs

s + !h
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a sin(!t)
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Example 6

Consider the following system

ẋ1 = 0.5x1 + 0.1x21 + u

with the following cost function: y = 1 + 4(x1(t− θ)− 0.2)2.

θ = 0.5

Tuning parameters: A = 10, ω = 100, ωh = 1000, k = 0.5 and
τI = 10.
The initial conditions are x1(0) = 1, û(0) = 0.
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Example 6
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ESC Observer design: Motivation

The design of observers remains a challenge in nonlinear systems
Very few design techniques exist:

I Differential geometric techniques: yield design subject to
restrictive assumptions

I Optimization based techniques: not reliable for real-time
implementation for nonlinear systems

I Particle filtering: computationally inefficient due to sampling
with no provable convergence

Objective is to propose a new alternative observer design that
exploits the PI extremum-seeking control approach.
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PIESC for observer design

We consider a class of nonlinear systems of the form:

ẋ = f(x) (4)
y = h(x) (5)

where
x ∈ Rn is the vector of state variables,
y ∈ R is the output variable available for measurement.
f(x) and h(x) are smooth vector valued functions of x.

Assumption

The system (4), (5) is observable.
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PIESC observer design

We consider the cost

V =
1

2
(h(x)− h(x̂))2. (6)

Proposed PIESC observer:

˙̂x = f(x̂) +K(t)(y − h(x̂)) (7)

K̇i = − 1

aτI
V̇ D(ω) (8)

K(t) = −kg
a
V̇ D(ω) + aD(ω) +Ki (9)

Aims to minimize V by manipulation of the observer gain K(t).
V̇ is estimated using a high-pass filter.
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PIESC observer

Tuning parameters are:
kg is the proportional gain.
τI is the integral constant.
D(ω) = [sin(ω1t), . . . , sin(ωnt)]

ωi are positive constants such that
1 ωi

ωj
are rational,

2 ωi 6= ωj for i 6= j and
3 ωk 6= ωi + ωj

for all i, j and k ∈ [ 1, . . . , n].

34 / 53



PIESC observer

Analysis proceeds in three steps:
1 Averaging of the error dynamics e = x− x̂:

ė =f(x)− f(x̂)−K(t)(h(x)− h(x̂))

K̇i =− 1

aτI
V̇ D(ω)

K(t) =− kg
a
V̇ D(ω) + aD(ω) +Ki

2 Stability analysis of the averaged system,
3 Averaging analysis to compute deviation of the real system from

the averaged system:

‖eav(t)− e(t)‖2 ≤ β(a, kg, τI , D(ω))
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PIESC observer: LTI system analysis

First focus on observable LTI systems

PIESC observer:

˙̂x = Ax̂+K(t)C(x− x̂)

K̇i = − 1

aτI
V̇ D(ω) (10)

K(t) = −kg
a
V̇ D(ω) + aD(ω) +Ki.

where V = 1
2(Ce)2.

Error dynamics:

ė = Ae−K(t)Ce (11)
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PIESC observer: LTI averaged system

Averaged error dynamics yields:

ėav =Ω(A−KiC)eav − aΓ(Ceav)eav

K̇i,av =− Ceav
aτI

Γ(Ceav)(A−Ki,avC)eav +
a

kgτI(Ceav)
Γ(Ceav)eav

For C = [1, 0, . . . , 0] (wlog), we have:

Ω =



1 + ψ1

((
kg
a

)
(Ceav)

2
)

0 0 . . .

ψr1

((
kg
a

)
(Ceav)

2
)

1 0 . . . 0

ψr2

((
kg
a

)
(Ceav)

2
)

0 1 . . . 0

...
...

. . .
...

ψrm−1

((
kg
a

)
(Ceav)

2
)

0 0 . . . 1


.

and
Γ(Ceav) =

a

kg(Ceav)2
(Ω− I).
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PIESC observer: LTI averaged system

The functions ψi given by:

ψ1(σ) =
1√

1− σ2
− 1

ψ3(σ) = 3

(
1√

1− σ2
− 1

)
− 4

σ2

(
1√

1− σ2
− 1− 1

2
σ2
)

ψ5(σ) =5

(
1√

1− σ2
− 1

)
− 20

σ2

(
1√

1− σ2
− 1− 1

2
σ2
)

+
16

σ4

(
1√

1− σ2
− 1− 1

2
σ2 − 3

8
σ4
)
· · ·

arise from the averaging of the error dynamics.
They are related to Chebyshev polynomials of the third kind:

I Each subscript is associated with the choice of frequencies.
I ψr(σ) are positive definite for r = 4k + 1 for σ2 < 1, k = 0, 1, 2, . . .
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PIESC observer: LTI averaged system

Resulting observer is reminiscent of Chandrasekhar-type algorithms
(Kailath [1972], Lindquist [1974])

Observer (and LQR control) without the need for the solution of
Riccati equations.

Theorem
Consider the average error dynamics with average gain updates. Then
there exists kg, a, τI and a set of frequencies (ωi) such that the origin is
an asymptotically stable equilibrium for all eav(0) with (Ceav(0))2 < 1.

By averaging analysis with ω1 as a perturbation parameter. We
get:

Theorem
Consider the PIESC observer error dynamics and PI gain update. Then
there exists kg, a, τI and a set of frequencies (ωi) such that the
estimation error dynamics enter an O(1/ω1) neighbourhood of the
origin asymptotically.
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Example 1

Consider the dynamical system:

ẋ1 = x2, ẋ2 = −x1 + x3, ẋ3 = −x2 + x3, ẋ4 = −x3

It is assumed that y = x1 is available for measurement. We apply the
proposed ESC observer with A = 20, kg = 10, τI = 0.001 and the dither
signal

D(ω)> =
[

sin(25t) sin(125t) sin(225t) sin(325t)
]
.
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Example 1
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Figure: Error dynamics.
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Example 1
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Design of nonlinear observers

Analysis of the PIESC nonlinear observer is considerably more
difficult.

I Follows the same steps as the linear observer design analysis.
I But resulting averaged nonlinear error dynamics show that the

PIESC formulation provides access to elements that are not
measured: e.g. ∂h

∂x (x)

Approach works for systems with "averaged" Lipschitz properties
(potential to handle discontinuous dynamics).
Provides a general observed design for observable nonlinear
systems.
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Example 2

Consider the dynamical system (Andrieu et al. [2009]):

ẋ1 =
x1x2

Kxx1 + x2
− ux1

ẋ2 = − x1x2
Kxx1 + x2

+ u(1− x2)

where

u(t) =

{
0.41 t < 10, 0.02 10 ≤ t < 20,
0.6 20 ≤ t < 35, 0.1 ≥ 35.

Objective is to estimate x2 and Kx using y = x1.
Problem not solvable using high-gain observer techniques
Use frequencies ω1 = 25, ω2 = 125, ω3 = 5.
Tuning parameters are kg = 1, τI = 0.01, a = 30.
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Example 2
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Example 2
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Figure: State and estimated state trajectories.
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Example 3

Consider the bioreactor system with Monod kinetics:

ẋ1 =
x1x2

Ks + x2
− ux1

ẋ2 = − x1x2
Ks + x2

+ u(1− x2)

where

u(t) =

{
0.41 t < 10, 0.02 10 ≤ t < 20,
0.6 20 ≤ t < 35, 0.1 ≥ 35.

Objective is to estimate x1 and Ks using y = x2.
Problem requires slow (asymptotic) observers
Use frequencies ω1 = 25, ω2 = 125, ω3 = 5.
Tuning parameters are kg = 1, τI = 0.01, a = 30.
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Example 3
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Example 3
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Conclusions

A proportional-integral ESC structure is developed to eliminate
time-scale separation

I Proportional action provides quick transient response
I Integral action computes the correct optimal steady-state

Shown to stabilize a class of minimum phase nonlinear systems to
a neighbourhood of the unknown optimum.
Proposed a systematic PI ESC observer approach was a large class
of detectable nonlinear systems.

Future and Ongoing Work:
Study extension to nonminimum phase cost dynamics and unstable
dynamics
Generalize to discrete-time dynamics
Application in distributed optimization over networks of dynamic
local agents.
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