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1. Introduction and Motivation L

1. Introduction and motivation
@ Transport delays: Input, output, state, distributed, networking, neutral systems
@ Delays: SISO/MIMO. Single/multiple. Time invariant/variant. Uncertainty.
@ Motivation examples

=
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Introduction L

1. Introduction and Motivation

@ Delays are present in most industrial processes. Like non linearities.

@ Delays may be caused by
@ Mass, energy or information transportation
@ Several time lags connected in series
@ Processing time of different devices: sensors, controllers, digital systems

@ Long delays put some control difficulties, because
@ Disturbances are not treated immediately
@ The effect of a control action is not immediately realized
@ Current actions should take into account what has been already applied

=
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Introduction L

1. Introduction and Motivation

@ There are different delays and they require different treatment
Q@ Input/output delays, due to transport or measurement processes
Q@ State delays, due to internal recycling of mass (energy or information)
@ Distributed delays, as in networked systems

@ They can be
Q@ Fixed (time invariant), time variant, stochastic.
@ Single/multiple, if they appear in several points

@ The process may be non linear

=
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Examples L

1. Introduction and Motivation

Water heater

@ Water is heated by burning gas

@ Water temperature is measured at the water outlet flow

@ Measured temperature is not the water temperature inside the heater
Q

Changes in valves do not change the current water/gas flows

V2

h Gas
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Examples

1. Introduction and Motivation

Evaporators in the sugar industry

Q

e PP

=

Steam is used to heat and evaporate the sugar cane juice

The evaporator consists of several stages, the juice is passing through

stages levels are locally controlled

Changes in steam and/or juice flows have retarded effects on each stage
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Examples L

1. Introduction and Motivation

Hot Steel Rolling Mill
@ Steel web is passing through different stands
@ A rolling action is taken at each stand
@ Interstand temperature decreases
@ Thickness and temperature are measured at the exit

=
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Examples

1. Introduction and Motivation

Networked Control Systems

@ Process sensors and actuators are spatially distributed
Control nodes may be located elsewhere
Communication channels introduce non deterministic delays

e ep

There are: network interface delay, queuing delay, transmission delay, propagation
delay, link layer resending delay, transport layer ACK delay, ...= temporal
non-determinism. May be missing data.

Controller

Control NODE e

Actuator

PROCESS

Sensor

Sensor NODE Process NODE
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Examples

1. Introduction and Motivation

Chemical Reactor with Recycling
@ Distributed process
@ Delays in measuring the output variables (temperature and concentration)
@ Delays in acting on the input flows (reactive and refrigerator)
@ Part of the output is recycled

TO:’ CaO’ QO T
Q,T,
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Examples L

1. Introduction and Motivation

Processing delay
@ CPU processes sequentially
Data acquisition, storage and transmission
Control action computation = Control action delivering

e ep

Subtasks: 1) Data acquisition, 2) Mandatory (basic) control algorithm, 3) Optional
(refinement) control, 4) control action delivering, 5) variables updating for next
period

©

Control action interval (delay + jitter)

Computation time

C,+C,+C,=C,
Tasky
%MJ |

h Pha se 4_-|‘ Period

Time Delavs in RT Control- CUL-UK. March 2012 - P. Albertos UPV 1079



2. Models and control iIssues L

2. Models and control issues
@ Basic Models
@ Extensions
@ Control issues
@ Key question : Are delays always degrading performance?

=
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Basic Models L

2. Models

@ Internal representation  Continuous time: x € R™;u € R™;y € RP; Internal
delays: r.

x(t) = iAj:C(t —tj) +ibiui(t —ti)
J=0 i=1

To

) = Y Cz(t—t;) 1=1,2,...p
j=0

z(to +0) = (@), 0¢€|[-7,0];7=maxt;

@ External representation

y(s) = P(s)u(s); P(s) = [pij(s)]

pij(s) = gij(s)e Fii®

Ref. C-M. Chen. Flexible Sampling of a State Delay System. J Franklin Inst. V 334B,
W643—652, 1997.
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Basic Models L

2. Models
Discrete time representation:  h: sampling period and, for all delays t¢; = hd;
Discretization of state delays in CT equation is not immediate. It is in input/output delays:

#(1) = An(t) + Agw(t — tg) + bu(t) = t; = dh
Thi1 = Az + Arxg_gr1 + Asxg_q. + Buy

Ref: C-M. Chen. Flexible Sampling of a State Delay System. J Franklin Inst. V 334B,
pp643-652, 1997.

=
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SISO plants L

2. Models
() —7u(2)149:(2) la(2)
e s{K(2)z P(2) )
R(z)z™ <J -
F(z)z[* S—

Input delay (z—%)

Measurement delay (z~ %)

Internal delay (z—%)

Process P(z), controller K(z), filter F'(z), recycling R(z)
Input/output disturbances (q)

Measurement noise (n(z))

PPpPEPP PP

Loop delay (d; + d,)

=
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MIMO plants

2. Models

@ Input delay (z— %), different for each input

@ Measurement delay (z—9°), different for each output

@ Internal delay (z—%), cross-coupling delays, j = 1,2, . ..

—>

u,(2)

D .
Z_dm

=

P(2)

.

y(2) = P(2)u(z); P(2) = [pi;(2)]

pij(2) = gij(2)z~ %
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Other delayed plant models L

2. Models

@ Neutral. Different delays appear in the state and its derivative

&(t) = flz(t), z(t — 1), 2(t — 7), u(t)]
@ Distributed

r t

z(t) = Az(t) + Bu(t) + Z/t G (AN)z(A) + Hj(MN)u(N)]dA

j=17v1t"1;

@ Combined delays

=
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Other delayed plant models L

2. Models

@ Non linear. CSTR;:

dC, (t) B (1 — )\)q(t — Lz’,l)Ca,O — q(t — Li,l)Ca(t) + )\q(t — Li,l)Ca(t — Lm)
dt - 1%
—aCa(t)e” RTLm W
dT(t) (1= Nq(t — Li1)To — q(t — Li)T(t) + Aq(t — Li 1)T(t — Ly)
dt B V
22 o,we 7o - L5 1) — 1) @
PCp pcpV
dly(t) _  qs(—Liy2) B Us B
e T e S AORENID) ®

@ Uncertainty
@ Model parameters
@ Delay uncertainty
L @ External disturbances
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Chem. Reactor with Recycling L
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Control Issues L

2. Models

Stability
@ Let us consider the SISO case, with single state delay. The process model is:

z(t) = Ax(t)+ Age(t —tg) + bu(t —t;)
y(t) = cx(t—to)

@ The characteristic equation is:
det[s] — A — Age %% =0

The input/output delay will influence the closed-loop stability
@ This can be generalized to a quasipolynomial characteristic equation

n 'S
g E aijsze_th:O

i=0j=1

=
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Tracking and regulation

2. Control Issues
@ State feedback (only state delay): u(t) = Kz(t), =

det[s] — A — Age %45 —bKe %51 =0
@ Output feedback: u(s) = K(s)[r(s) — y(s)], =
y(s) = ceTro%[s] — A — Age '] Tt be T K (s)[r(s) — y(s)]

Control approach

Delays are unavoidable and cannot be compensated: =

Take the delay out of the control loop (if possible) and control the “fast part" of the
process.

=
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When delays are relevant?

2. Control Issues

Delay/time constant

e If the time delay is large w.r.t. the dominant time
constant

a If the “control effort” is important

a Otherwise ... delete or approximate

=
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Are delays always bad? L

=
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Are delays always bad? L

2. Control Issues

Resonant systems:  Enlarging the bandwidth

Process: G(s) = 3(3248691%1); Controller: K (s) = 20; Sensor: F(s) = e~ 7%

Time Delavs in RT Control- CUL-UK. March 2012 - P Albertos UPV 22[7T]



Are delays always bad? L

2. Control Issues

Conditional stability

Nyquist Diagram

15 ‘ ‘ ‘ ‘ ‘ 15 : : From: U
ir _
05
-0.538
-10
< - <
F / 1 \ > o
0
j=2 j=J
E g E
-05F
1k
15 I I L L L I
-12 -10 -8 -6 -4 -2 0 -1
Real Axis Real Axis

@ a) Gain-conditionally stable
@ b) Phase-conditionally stable

=
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Are delays always bad?

2. Control Issues

Stabilizing delays
@ Given a second order integrator, it cannot be stabilized by any static output
feedback £ (t)u(t); y(t) = x(t)
but it can be with w(t) = —k1y(t — t1) — kay(t — t2)

@ A double oscillator cannot be (s* + (w? + w3)s? + wiw?2)y(s) = u(s) stabilized by
any static output feedback but it can be with u(t) = —ky(t — 7)
as far as sin(w17) < 0 and sin(wa7) > 0.

h k=-0817=2,wi=n+1Liwe=m—1

Time Delavs in RT Control- CUL-UK. March 2012 - P. Albertos UPV
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3. Classical TD control L

3. Classical approaches for time delayed plants control
@ Time delay effect and compensation
@ Time Delay Compensator (DTC): Smith predictor (SP)
@ PID control
Q

Q

=
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Delay effect

3. Classical TD control

SISO Input/output delay:  Time response
@ Step response of G(s)e~ 5L, with L > 0.

@ L represents an actual delay or an approximation

Level (%)
\‘
o

Level
|
20 25

time

control (%)
[8)]
o

control
| | |

0 5 10 15 20 25
I time
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Delay effect L

3. Classical TD control

SISO Input/output delay:  Frequency response
Q@ |G(jw)| = |e779F| =1, and LG (jw) = —wL

sL

@ Example P(s) = (“i’:r—s)Q

-250F | ==L=0

¥

[ i

. .
Y
Y
.

_300_ ; HH\_ ; ‘HHH\O ; il
10 10 10 10 10

I Frequéncia (rad/s)
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3.

Sl

=

Time Delavs in RT Control- CUL-UK.

Delay effect

Classical TD control

SO Input/output delay:
@ Process P(s)

_ (1+T;s)
@ Control C(s) = Ke ==

— (I+1.5s)(110.4s) ¢

Controlled behavior

—sL

@ ForL =0tunedwith Kc=1eT; =1.2.
@ For L = 1.5 reduce gainto Kc = 0.2,

Resposta ao Degrau

Resposta ao Degrau

T
- .y

— (L=0,Kc=1)
= = =(L=1.5,Kc=1)

- = (L=1.5,Kc=0.2)

2.5

5 7.5
Tempo (s)

March 2012 - P. Albertos UPV
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“Ideal" control L

3. Classical TD control

SISO Input/output delay:  Controlled behavior

r(t) y(t)

—»GTD_— C(s) G(s) el —>

The delay is out of the characteristic equation:

GICE) any(y,  C)

—sL
1+ G(s)C(s) T a)CE° 1

y(s) =

y(s) = T(s)e™*Fr(s) + Ta(s)e™*"q(s)
The design problem is:

@ Determine C(s) for T'(s) and T4(s)
hQ_ A 2-DoF controller can be used
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“Ideal" control

3. Classical TD control

Smith Predictor (SP)

r(t) @

< —

C(s)

Yp (t)

Gn(s)

)\q(t)
GH—

P(s) >

9(t + Ln) (1)

Under perfect model, thatis: P(s) = Pn(s) = G(s) = Gn(s); L = Ly,

y(s) =T(s)e *Lr(s) + G(s)e [1 — T(s)e_SL] q(s)

Still the delay is out of the characteristic equation, but P(s) appears in y(s)

=
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SP equivalent controller L

3. Classical TD control

| q(t)
Simple control loop - Complex controller )\

r(t) y(t)
—>(P)>| c©) L G PG >

- (t)
G (3) gt + L) —sL ’
yp(t) + ep(t)
r- - T - T T T T T~ | q(t)
r(t) el I l u(t)
_’@—_:?—_ o) T@* Pe) |
| I
: Gn(s) — Puls) |
- - - — _— — _ - _ _ _ I
B C(s)
L Ceq = 14+ C(s)(Gn(s) — Pp(s))
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PID control L

3. Classical TD control

PID models and features (review)
@ Basic PID

C(s) = Ke(1+

T series
Ts + Tys) ( )

Ko(1+ Tis + Tys)
alys +1

C(s) = (proper)

@« s tuned for noise cancelation and robustness, a € (0, 1).
@ Other implementations:
14+T;s Tys+1

C = K series
(8) c T;s aTds+1( )

Ki KdS
C = K arallel
(s) p T S + aK s+ 1 (p )

=
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PID control: Drawbacks L

3. Classical TD control

15

| 1

[EEN
[}

o
o)

Saida e Referéncia
o
N

Saida e Referéncia
o

o
o)

o
[N

: 05
: — Saida —Saida
OJ - = Referéncia | - = Referéncia
0 50 100 150 _10 2 4 6 8 10
Tempo Tempo
a) b)
26_58 26_5 .1s
a) Steady-state error  Process P(s) = —2<—~—— model P, (s) =

s(140.1s)
Primary controller PI: C(s) = 0.258‘;—;“. Step disturbance —0.05 att = 75.

b) Internal instability =~ Process P(s) = % Pl primary controller with K. = 6, T; = 1.

h Closed-loop poles assigned at s = —2 e s = —3. Step disturbance —0.1 at ¢t = 5.
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Approximated PID control L

3. Classical TD control

Use Pade approximation:  P(s) =

R(s) T > C,(s)——>{ P(s) Y(s),

1. Design a PID for: P, (s) = hf{TS ;ggfi

2. Design a controller Pl C'(s) = &2 (;;le) for G(s) = 157

C(s)

@ The SP equivalent controller is: Ce = 1+C(s)[Gn(s)—Pn(s)]

@ If 77 =T results: Ce(s) = TSJFEE(“;{‘?_M)

@ The controller is:
1+T;s Tys+1

Ce(s) = K
e(s) ¢ T;s alygs—+1
h W|th KC = ﬁ, TrL — T, Td = O5L, o = Tj—?—L
T

To get a closed-loop time constant Ty =

Time Delavs in RT Control- CUIL -UK_ KKy®
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PID control extensions

3. Classical TD control

2-DoF PID control Q(s)
R(s Yis
(—)>F(S) C(s)*ép(@ .

@ 2-DoF structure:
T 2
- closed-loop poles for disturbance rejection: C(s) = K. “t_,f’;f&ff’icgs )

14-bT;s+cT; Ty s>
1+Ti S—|—TZ' Td82

- set-point filter to smooth the reference response: F(s) =

Unstable plants - (?9)_ ______ 1

R S |
(—)>F’(S)—>®_—'|@# D»[P(s)

R

@ Sequence: 1) Stabilizing controller K,; 2) PID for equivalent plant P»; 3) Set-point
filter

Time Delavs in RT Control- CUL-UK. March 2012 - P. Albertos UPV
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PID tuning L

3. Classical TD control

Dominant delay

@ Stabilize P(s) with simplest P controller: Ky

—sL

Approximate Py = fii—:rs)

B (1+Ts)(14+0.5Ls)
Use PID controller C(s) = K. Ts(1+0.5aLs)

Define the closed-loop time constant Tj as a function of L: % = =

11—«
For each «, the nominal response is the same (time scaled by L).
The greater « is the more robust the system results, and the slower it is!

ePppP P P P

Define the set-point filter F'(s).

=
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PID control example L

3. Classical TD control

Design example

_ 0.2 —5s 0.2 —b5s
@ Process P(s) = s(1+s)(1+oe.5s)(1+o.1s)' Model P, (s) = ==—.

.- —5s
@ tune Ko = 0.3 to stabilize P, ~ %

@ Tuningfora=0.2Casel:b=c=1,Case 2: b =0.43; c = 0.5.

T I — 0.4 :
16" R =02 e . —\=0.2
: . == IV:O_Z, b=0.43, ¢c=0.5 ' -==y=0.2, b=0.43, c=0.5
1.4} Lo e Referéncia 1 03 s ]
m [ ]
S 1.2 kS :
c ) .
«@ — L]
@ 1r c 02 =
)3 3
X 0.8} P
[} ke
3 0.6¢ @
s <
9D 0.4r
0.2} =
0
0 20 40 60 80 100 % 20 40 60 80 100
Tempo Tempo

=
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PID control example

3. Classical TD control

R(s)
—» F(s)
2DoF-SP.
@ ForP —K”e—_SLnandG = Kp .
nT 14 Ts T 14T
- Choose C(s) = Ke(1+ o), With T; = T: 14 C(5)Gn(s) = 1 + "2z
- Define the required closed-loop time constant Ty, by: K. = K?TO
) . _ 1+4sT,
- Tune the input filter F'(s) = {57+
@ This allows dealing with tracking (7%) and disturbances (7p):
Y (s) B e—5Ln 2 Y (s) B Kge skn [1 e~ skn :|
R(s) 1+ sTh Q(s)  1+sT 1+ sTp

- Simple tuning for delay dominant systems: 1o =11 =T = K. = %

P
(Predictive PI Controller)
Time Delavs in RT Control- CUL-UK. March 2012 - P. Albertos UPV 20/7T]



2DoF-SP PID control

3. Classical TD control

1.2

0.3

0.25r

0.8r 2 02 s
%06 ‘-5’0.15—
: ;
0.4} G 01 |
0.2} ] —PPI 0.05-
1 = ==PID-2DOF — PP|
1 Referéncia = ==P|D-2DOF
% 50 100 150 % 50 100 150
Tempo Tempo
. _ e 10s . __ Be 153
@ Plant: P(s) = (T Model: Pn(s) = 2=
@ First tune a PID with o = 0.3 and then:
_ 0.35(L+2T) o LT _ _ _
K. = =257 T;=T+05L | Ty= L5 | Ty =0.15L | b=0.80 | c=1

@ As aresult: PPl is faster and less oscillatory.

LQ- In general, the SP presents a good tradeoff between performance and robustness.

Time Delavs in RT Control- CUL-UK.
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4. SP Improvements L

4. Smith predictor improvements
@ Modified SP
@ Filtered SP
@ Unified SP

=
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Modified SP L

4. SP Improvements

Proposed by Zhong
A generalized controller Q(s) is added:

w
+
r +>(‘i » C(s) +>(“) té > G(s)e ™ 4
G(s) J
e Oc— G(s) f
O(s)
w
r + + + l+ y
—> F.(s) > C(s) PO »O— G(s)e ™ T
- T
O(s)

=
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Modified SP L

4. SP Improvements

Zhong implementation example

A 1
T 2 o | L |+ 1
T0S+1 A k A

G(s)e™ >

Z(s)

I_Q1(l_e_Tls)_%(1_e_T2s)

Change

=
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Modified SP L

4. SP Improvements

Proposed by Tao: Rejecting load disturbances

w
: l-
—{C,(5) SO— Gs)e™
F(s)
G.(s) [+
—0——{ 6 e

Proposed by Xiang: Dealing with integrative processes

w
r + + u l"‘ Y
— K,(5) —0 ’CP__:O_’ G(s)e™ >
G(s)
N +
Q1 Ki(s) > o™ ——0
+

K3 (S)
L K,(s) !
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A




Filtered SP L

4. SP Improvements

[Normey-Rico]: SP with prediction filter F.(s), to reduce modeling errors:

q(t)
T(t) y(t)
H@—» C(s) (H— P —->
L G(t + L) 9(t)
Gn(s) e sL
Yp(t) B
)& Fi(s)
oo T q(t)
ﬂ»@—% 0 [P oy —
] : Gn(s) Pn(s) >3
Fr(s)
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FSP: Equivalent controller L

4. SP improvements

B g _________ I q(t)
r(t) | Ceal® : (1)
—{3)- C(s) I P(s) |—»
| |
: Gn — Fr P, :
Fr.(s)
V() CelP() . V(S _ Cegl®
R(s) 14 Ceq(s)Fr(s)P(s) R(s) 14 Ceq(s)Fr(s)P(s)

@ F; should be “low-pass”
@ Avoid low time constant cancelation
@ Allows disturbance rejection

=
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A global setting of the SP L

4. SP Improvements

Most proposals can be fitted in this schema
Q@ IfGi=Gg=Gs=1
@ (3 applies for servo; G4 applies for regulation and G2 applies for model mismatch.

r(z)

G PGP 6. (e

la(2)

G, (z)z™

d

. n(2)
4_

L———> G (2) > o PP

G2 e—

G;(2)|le———

G(2)e—

LQ_ Difficult tuning of the many controllers.
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5. MIMO Plants L

5. MIMO Plants.
@ A SISO stable output predictor. GP robustness properties.
@ Multiple delays. Extension to MIMO plants
@ MIMO plants decoupling
@ A complete solution?

©

=
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Delayed MIMO plants L

5. MIMO plants

y(2) = P(2)u(2); P(2) = [gij(2)z~ %]

u,(z)
Z—d[1 - P(Z) Z_dl yl(Z)
S | — J a2,

1. Measurement delay (z~%°), different for each output: P(z) = D(2)G(z)
where D(z) is a diagonal matrix of delays and G(z) is the “fast" model of the plant.
SP can be used with Py, (z2) = Dy (2)Grn(2)

2. Input delay (z~ %), different for each input.
Now P(z) = G(z)D(z) and the only option is to increment the delays at the

required inputs to get a common delay. Then P, (z) = 2% G, (z) and SP is
applicable

3. Internal delay (z~ %), cross-coupling delays, j = 1,2, . . ..
L Classical SP is not applicable anymore
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A Generalized Predictor

SISO plants

@ For SISO I/O delayed plant: Py (2) = gp(2)z~%

Tyl = Azg + bug;

K(2)

u

Yk = CTk;

» P(z2)

g(z) = c(z] — A)~ b= n(z)

d(z)

—> P(2)

@ Define;

v (2) == va(2)u(z) +y(2) = ¢" (2)u(2);

nt(2)

g:

n(z)

d
Yha(z) = cA™? Z At lpy e

=
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GP for MIMO plants L

5. MIMO plants
o
G(z)=C(zI-A)'B=| (zI—A)—l[ by e by ]
Define: _ -
Y11(z) 0 Yim(2)
U(z):= s b (2) = g AT ZAk 12— F
| Ym1(z) 0 Ymm(z)

gl e gl ]
This leads to: GT(z) = = (V(2) + P(2))

l 9:211('2) g;rnm(z) _

95;(2) = ij (2) + pij (2)

=
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Design procedure

5. MIMO plants

Given the DT full plant model, P(z)

Q

P PP

©

Time Delavs in RT Control- CUL-UK.

Compute the rational transfer matrix G(z),

Get the undelayed output transfer matrix G (z),

Compute the predictor filter ¥(z),
Stabilize the MIMO system by controller K (z), for GT(z), such that

H(z) = P(2)K(2)[ + G'(2)K ()] !

For the previously stabilized plant, H(z), improve the controlled system
performance by, a robust performance controller Q(z).

w
e R
F(z) — 0(z) > H(z) —

— H(z) ——4;

March 2012 - P. Albertos UPV
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Design example L

5. MIMO plants
@ Plant model, P(s), h =0.1s

+ y
r "o ¢ M K(z) ! P(2) +>i >

+
+ + + N
—» Y(2) >T<
T
Y
e—0.5s 0.5¢0-7s 0.105172° 0.04758z "
_ s—1 S+1 _ 2—1.105 2—0.9048
P(s)=| (12 0.3 e—0.7s = P(2) = | 50099553 0.1
10s+1 s z—0.99 z—1

z—1.105 z—0.9048
0.0010249 0.1

z—0.99 z—1

0.063786  0.095829
GT(z) = [ ]

=
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Design example L

5. MIMO plants

For GT(z),

z—1
—0.070359 0.58583

leading to H(z) = P(2)K(2)[I + GT(2)K(2)]~!

@ Design the controller: K(z) =

3.8625(2—0.9823) (97915 ]

: : : 1.6487 0
with static gain: H(1) =
0.0050 1.0002

@ Choose the IMC controller such that () = Q¢ with

0.6065 0
—H(1) ! =
Qo (1) [ —0.0030 0.998 ]
0.0198 0
and prefilter: F(z) = | #-0.9802  ~ ° o
0 z—0.9802

=
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Design example L

5. MIMO plant
@ Preliminary results

g
3
0 1I0 2IO 3I0 4IO 5IO 6IO 7I0 80
1F _—
|
P |
2 05} |
3 |
0 |
0 1I0 2I0 3I0 4I0 5I0 6I0 7IO 80
Time(s)
h Step responses. K(z) being designed by loop shaping.
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Design example

5. MIMO plants
6—0.68 0.66_085
_ —1.1 1.1
@ Improved robustness. For Pp(s) = | | $7}ls, 1;:_0_73
10s+1 s
The system becomes unstable with previous K and Q.
0.00995
: _ : _ —0.99
@ Design Q = Qo Fp with Fy(z) = z 0 0.00995
z—0.99
1r = N
- : //’ —%
5;505 : /’ -==Y,
° I I’ ''''' I’l
17
0 —_—————————————— T r2
0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 70 80
0.5
0 10 20 30 40 50 60 70 80

time
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Decoupling

5. MIMO plants

P(z) = [gij(2)z~ %3]
@ Dynamic precompensator: P(z) = M(Z)Kd_l(z), M (z) being diagonal.
All matrices making M = K 4P diagonal are K; = adj(P)K, for any K.

@ State Feedback (no delay): For x4 = Axy + Bug;

Uk

Kpzxy + Fog;
 1CA™M
9C A2
—F
| mCA™

Time Delavs in RT Control- CUL-UK.

= y(z) =

1CAT1_1B i
QCATQ_lB

| mCA™ 1B |

~ =Tl

0

yr = Cxy
—1
0 0 0 ]
z="™ 0 0
v(2)
0 0 z7 "™ |

March 2012 - P. Albertos UPV
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Decoupling L

5. MIMO plants

@ Approximated decoupling

@ Approximate a first+order plus time-delay of the system (each TF)
@ Approximate any time constant in each column (1 4 7;;s) by

(14 755s((1 + 735 — 7s5)s where 75; = min; 7
Q@ Start with K = I, then K4 = adj(P)

@ Extract the larger common time delay and time constant from any column of
K.

@ Apply a controller design for each diagonal element

3 o—3s 2 ,—2s 2 —9

Example P(S) — 1—|—198 s 1—|—26s s =>Kd(8) — 1—|—:2ls 5 .

1+5s°¢ 1+7s°¢ - 1+3s°¢
Leading to

2 —2s 6 —3s
M(s) = TT36s¢ T F6s)(1+35)(1129) € 0
- O —2 6_43 _|_ 6 6_53
1+45s (14+5s)(143s)(142s)
L High cost for decoupling!!
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Decoupling

5. MIMO plants

@ Disturbance cancelation
@ Estimate the state
@ Estimate the “single" outputs and observe the “disturbances™:

Plant
u(z) q P(2) y (Z)>
K, [
L B+ Ky (z)*%" 21 J) 4(2)

A—KOE*<-|

State estimator

=
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| Estimator
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Multidelays

5. MIMO plants

@ Optimal control:  y(2) = 3P, ci[z] — A7 tbz=diu(z)

u(z) WO ),
> G(2) >z
Y e
" G, (2) ~
p (Z) Plant -
u@ ]l P) >
u(z ¥(2) e o+ iy K,
~d |———pO————> )%(Z)
*L z'7 >

— bH (POP> T ol z
T_ AJ _______________ _ —»D+ K\ (2)
¢ bl ¥,(2) ‘

b) Az’

=
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LA—KOE

|

State estimator
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Multidelays: Example L

5. MIMO plants

—0.6s
5t (1+s)e h =0.1s

@ Assume: y(s) = (1+25)(111.55)"

Gi(z) = 0.0080163(2+0.9619) _ 0.0080162+40.007711
1\#) = (2=0.9512)(#—0.9355) _ 22_1.8872+0.8899
Ga(2) = 0.033048(2—0.9048)2"% _ 0.033052—0.0299 ,—6
2\#) = T(2=0.9512)(#—0.9355) ~ 22_1.8872+0.8899

+

v

—> G2z
,(2)
e \ ’
z \(z (2)
: u(z) (;1 ( Z) »(@) y

K, | 3
{ - x(z)
b+K\(2) i g

=

cp = [ 0.0641 0.0617 };cg = [ 0.1322 —-0.1196 }

1.8867 —0.8899 | . _ [ 0125 |
1 0 ’ o 0 ‘

~

c=c1 +cyg A6

=
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Multidelays: Example L

5. MIMO plants

@ Disturbance rejection y(z) = 37| ¢;[2I — A]71bz=%iu(z)
_0.0080163(2+0.9619) . ~—1, + _ (2—0.9512)(2—0.9355)
G1(2) = 0.0512)(:~0.0355)° 1 () = “G.0080163(510.9619)
—400
Ga(z) = O'(()(3;??3?9(;1_2())(20_45?355) ;L =40s; Inputdisturbance att = 70s

F(z) == x=o0.01

(z—A)”
12 T T T
=
@ f\ ———
s 1
g
2
Plant 3 \/
< 08 .
n c
Q
b
= 06
.................... 2
]
Z
8 04r
r(z) u(z) 1@ 5
»D ' 2, > —»oO— z 1 » 2
A A S o2 \
- kot |
* ©
z £ / 1
u ( ) )E(Z) R E o ’ 1
State zc_z-d,ﬂz, Z(z). pr II
» Estimator ~ > 3 .
5 -0.2f \
= A it I S|
3
-1\ <+t TS L
F(2)G'(2) [* y |
"o 20 40 60 80 100 120 140 160 180 200
K Time (sec.)

=

Time Delavs in RT Control- CUL-UK. March 2012 - P. Albertos UPV 6270



6. Some applications L

6. Some applications
@ Aircraft Pitch control
@ CSTR control
@ Steel rolling mill
@ Networked control systems

=
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Pitch Angle Control L

6. Some Applications

@ Assume a simplified longitudinal model of the aircraft

Plant G(z)
Input delay \ Output delay
u v x —
L» Z_di k b >»® 27 k » C yk; 774 | yﬁ
a L A e
Plant G(z) Output/state
Input delay X delay
u 4 Xf—d
sl S b 8 =1 £ 2 —
b L A <€
T Xbed

F
i

Pitch9
L  LRH ¢

LRH

:-r_-\_\_ = =

i

.- e - _, —L »
Time Delavs in RT Control- CUL-UK. March 2012 - P Albertosdy P\
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Pitch Angle Control L

6. Some Applications

State variables: the angle of attack «, the pitch rate ¢ and the pitch angle 8, and the
control variable is the elevator deflection d.

0.95122 0.042956 O —0.00029667
A = 0.039026 0.94844 0 | ;b= —0.00855
0.056289 2.7608 1 —0.012226
Control index 0o
J = [af +10q¢ + 07 +0.162 ,]; = uf = Kay,
k=0

Measurement delay (do = 2):  x = Adozy_ g + Wy Uk_q,

where
—0.0003  —0.0006 0.9065 0.0816 0
Wy, =Wy = —0.0086 —0.0081 |; A% =A?= 0.0741 .9012 O
—0.0122 —0.0358 0.2176 5.3817 1

up=Kop=| 44216 372849 26412 |2 = uj = K[A% @y 4, + Wy, Up_g,]

=
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Pitch Angle Control L

6. Some Applications
@  Inputdelay: d; = 4

Plant G(z)
Input delay
a L A |
Plant G(z) State
— delay
u, N } X | Me-a, =Xk
—_—) b ;\y z 1 Z i] +—>
b A
Plant G(z) Output
_ delay  _
u X Vea =V
kL e = K c P [T Tk
C A

—0.0003 —0.0006 —0.0010 —0.0013
—0.0086 —0.0081 —0.0077 —0.0074

—0.0122 —0.0358 —0.0583 —0.0797
Time Delavs in RT Control- CUL-UK. March 2012 - P. Albertos UPV 667
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Pitch Angle Control

6. Some Applications

@ Results

a) Output delay: d, = 2;

14

12F AN

10f-

) 05

1

15

Ideal (blue); Predictor (réd,dashed)

a)

2

25

20

15

101

5}

0

—-5F

-10

b) Input delay: d; = 4

-~ _ _ -~ / S
\
\ /
\

0

0.5

1 15 2 25
Ideal (blue); Predictor (red,dashed)

b)

OPTIMAL CONTROL APPLICATIONS AND METHODS Optim. Control Appl. Meth.
(2011) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI:
10.1002/oca.1007

=
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CSTR Control L

6. Some Applications
@ Assume a simplified linear reduced order DT model of the CSTR

T,,C., Q, —l
Ve Q, T,

Tp1 = Axp+ Agrp_q+ B

ul,k—di’l
u2,k—di’2

' ' : : .0842
@ with the following matrices: B:[ 0.3776  0.08428 ]

—3.878 —6.6

)

h 4 _ | 07442 —o.03663 | [ 001819 —0.000355
— | 4576 1.735 » 4T 0.04433  0.02779
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CSTR Control L

6. Some Applications
@ Output delays are treated as before
@ Input delays, a state vector is associated with each input

[ T ] B A 0 T + B4 0 ] [ U1 ]
9o b1 0O A o 0 Bs uz |
_ A oy 4+ B ui
z2 |, uz |,

and the process state is given by z;, = T1,k—d; 1 T T2,k—d; o
Each delayed partial state can be computed by applying single delay for each input
@ State delay is compensated by:

up = Kap + Kgxi—d

allowing to assign the poles of the controlled plant provided that
@ Controllability. The pair (A, B) is controllable
h @ Delay cancelation. There exists K4 such that A; + BK,; = 0.
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Hot Rolling Mill L

6. Some Applications
@ Temperature model

STAND i STAND i+1
T,

Region A
/‘ Region B V/ .
m,n s

vv —& e,n
T,
\\ Vo
l—e
| L Kp,
| S
oT;(t, oT;(t,
Ofiltr) _ ) I6W0D) g, — Ty, 2)] + BT — Tt )5 Ti(t,0) = Tins(®
ot ox ’
. - b, K; ).
b= Kie NS G = — . (1 —e %)
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Hot Rolling Mill

6. Some Applications

@ Control schema: single stand

T

in,n

l

A
b,

- — G

1y

|

V

r,n
—‘)IZ
Stand
speed
Regulation

ol
Kb l—e™|

n

@ (), (s) is a Pl controller (sliding mode, IMC...) to counteract changes in exit

temperature
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Hot Rolling Mill

6. Some Applications

@ Control schema: 3-stand

Tin
—
1
o, v G,
: v, g
- VI@H@ SR1 le A"\
2
a, v, GT
J ’ Var— T,
. Vz@H@ﬂ SR2 G, ——
—
3
% vr,3 GT
; | v; LoT=T
Y +( )~ SR3 G’ -
Av TR O
T

7

@« weights the stand temperature changes due to inlet temperature changes

hQ_ ~ apportions the speed changes based on the pre-scheduled reduction.

Time Delavs in RT Control- CUL-UK.
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Networked Control Systems

6. Some Applications

w

u(k)

Predictor-Observer

@ NCS: Delay is random
@ Data missing. Packet drop
@ Undelayed signal estimator

=

Time Delavs in RT Control- CUL-UK.

Physical Sensor
Actuator P)I/ant Sampler
Delay Net K Delay
T,, etwor T,
A
Controller

x(k+h)

-h

z

u(k- h)

A

Predictor

X (k)

Non-uniform

Observer

Ys(k=t5c (k)

March 2012 - P. Albertos UPV
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Networked Control Systems

6. Some Applications

; _
B ), 7l > C L»
L4 le » ¢ Y >
d . .
oo CAY ATBT L e
i=1
yT
— L A e—3
< L | <
-/)\}f
» B ' » CcA?
A -« |
K < X
— v

@ Data missing.
LQ— Fixed delay
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/. Conclusions L

Conclusions

@ Time delays (as non linearities) are unavoidable and (usually) degrade
performance

There is not a unique treatment for time delays (as for non linear systems)
Single input/output delays are easily treated, even for unstable (NMP) plants

State (and distributed) delays require deeper analysis

e P PP

Additional delays, as well as cross-loops delays can be counteracted
@ By feedforward compensation based on estimations
@ This requires very good plant models

Stabilizing and optimal control are feasible
Tracking and disturbance rejection are questionable

hQ_ Random and time varying delays (NCS) require stochastic tools
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