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Introduction
1. Introduction and Motivation

Delays are present in most industrial processes. Like non linearities.

Delays may be caused by

Mass, energy or information transportation

Several time lags connected in series

Processing time of different devices: sensors, controllers, digital systems

Long delays put some control difficulties, because
Disturbances are not treated immediately

The effect of a control action is not immediately realized

Current actions should take into account what has been already applied
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Introduction
1. Introduction and Motivation

There are different delays and they require different treatment

Input/output delays, due to transport or measurement processes

State delays, due to internal recycling of mass (energy or information)
Distributed delays, as in networked systems

They can be

Fixed (time invariant), time variant, stochastic.

Single/multiple, if they appear in several points

The process may be non linear
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Examples
1. Introduction and Motivation

Water heater

Water is heated by burning gas

Water temperature is measured at the water outlet flow

Measured temperature is not the water temperature inside the heater

Changes in valves do not change the current water/gas flows

1V

2V

Water

Gas

T
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Examples
1. Introduction and Motivation

Evaporators in the sugar industry

Steam is used to heat and evaporate the sugar cane juice

The evaporator consists of several stages, the juice is passing through

stages levels are locally controlled

Changes in steam and/or juice flows have retarded effects on each stage

STEAM

JUICE

LC FC

BUFFER 2BUFFER 1

LT

EVAPORATORS

LCLC LC LC
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Examples
1. Introduction and Motivation

Hot Steel Rolling Mill

Steel web is passing through different stands

A rolling action is taken at each stand

Interstand temperature decreases

Thickness and temperature are measured at the exit
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Examples
1. Introduction and Motivation

Networked Control Systems

Process sensors and actuators are spatially distributed

Control nodes may be located elsewhere

Communication channels introduce non deterministic delays

There are: network interface delay, queuing delay, transmission delay, propagation
delay, link layer resending delay, transport layer ACK delay, ...⇒ temporal
non-determinism. May be missing data.
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Examples
1. Introduction and Motivation

Chemical Reactor with Recycling

Distributed process

Delays in measuring the output variables (temperature and concentration)

Delays in acting on the input flows (reactive and refrigerator)

Part of the output is recycled

Tj0 , Qj0

T0 , C  , Q0

LT
TT

VC1

VC2

A B C , Ta

T(t)

Q, T, Ca

Q, Tj j

a0
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Examples
1. Introduction and Motivation

Processing delay

CPU processes sequentially

Data acquisition, storage and transmission

Control action computation ⇒ Control action delivering

Subtasks: 1) Data acquisition, 2) Mandatory (basic) control algorithm, 3) Optional
(refinement) control, 4) control action delivering, 5) variables updating for next
period

Control action interval (delay + jitter)
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2. Models and control issues
1. Introduction and motivation

2. Models and control issues
Basic Models
Extensions
Control issues
Key question : Are delays always degrading performance?

3. Classical approaches for time delayed plants control

4. Smith predictor improvements: Modified, filtered, unified SP

5. MIMO Plants.

6. Some applications

Aircraft Pitch control; CSTR control; Steel rolling mill; NCS

7. Conclusions and open issues
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Basic Models
2. Models

Internal representation Continuous time: x ∈ R
n;u ∈ R

m; y ∈ R
p; Internal

delays: r.

ẋ(t) =
r

∑

j=0

Ajx(t− tj) +
m
∑

i=1

biui(t− ti)

yl(t) =

ro
∑

j=0

Cl,jx(t− tj) l = 1, 2, . . . p

x(to + θ) = ϕ(θ), θ ∈ [−τ, 0]; τ = max tj

External representation

y(s) = P (s)u(s); P (s) = [pij(s)]

pij(s) = gij(s)e
−Lijs

Ref: C-M. Chen. Flexible Sampling of a State Delay System. J Franklin Inst. V 334B,
pp643-652, 1997.
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Basic Models
2. Models
Discrete time representation: h: sampling period and, for all delays ti = hdi
Discretization of state delays in CT equation is not immediate. It is in input/output delays:

ẋ(t) = Ax(t) +Adx(t− td) + bu(t) ⇒ td = dh

xk+1 = Āxk + Ā1xk−d+1 + Ā2xk−d. + B̄uk

Ref: C-M. Chen. Flexible Sampling of a State Delay System. J Franklin Inst. V 334B,
pp643-652, 1997.
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SISO plants
2. Models

Input delay (z−di )

Measurement delay (z−do )

Internal delay (z−d)

Process P (z), controller K(z), filter F (z), recycling R(z)

Input/output disturbances (q)

Measurement noise (n(z))

Loop delay (di + do)
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MIMO plants
2. Models

Input delay (z−di ), different for each input

Measurement delay (z−do ), different for each output

Internal delay (z−dj ), cross-coupling delays, j = 1, 2, . . .

y(z) = P (z)u(z); P (z) = [pij(z)]

pij(z) = gij(z)z
−dij
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Other delayed plant models
2. Models

Neutral. Different delays appear in the state and its derivative

ẋ(t) = f [x(t), x(t− τ), ẋ(t− τ), u(t)]

Distributed

ẋ(t) = Ax(t) +Bu(t) +
r

∑

j=1

∫ t

t−tj

[Gj(λ)x(λ) +Hj(λ)u(λ)]dλ

Combined delays
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Other delayed plant models
2. Models

Non linear. CSTR:

dCa(t)

dt
=

(1− λ)q(t− Li,1)Ca,0 − q(t− Li,1)Ca(t) + λq(t− Li,1)Ca(t− Lx)

V

−αCa(t)e
− E

RT (t) (1)

dT (t)

dt
=

(1− λ)q(t− Li,1)T0 − q(t− Li,1)T (t) + λq(t− Li,1)T (t− Lx)

V

+
Hα

ρcp
Ca(t)e

− E
RT (t) −

US

ρcpV
[T (t)− TJ (t)] (2)

dTJ (t)

dt
=

qJ (t− Li,2)

VJ
[TJ,0 − TJ (t)] +

US

ρJcp,JVJ
[T (t)− TJ (t)] (3)

Uncertainty
Model parameters
Delay uncertainty
External disturbances
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Chem. Reactor with Recycling

Tj0 , Qj0

T0 , C  , Q0

LT
TT

VC1

VC2

A B C , Ta

T(t)

Q, T, Ca

Q, Tj j

a0

. Time Delays in RT Control- CUL-UK. March 2012 - P. Albertos UPV 18/75



Control Issues
2. Models

Stability

Let us consider the SISO case, with single state delay. The process model is:

ẋ(t) = Ax(t) +Adx(t− td) + bu(t− ti)

y(t) = cx(t− to)

The characteristic equation is:

det[sI − A−Ade
−tds] = 0

The input/output delay will influence the closed-loop stability

This can be generalized to a quasipolynomial characteristic equation

n
∑

i=0

r
∑

j=1

aijs
ie−tjs = 0
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Tracking and regulation
2. Control Issues

State feedback (only state delay): u(t) = Kx(t), ⇒

det[sI −A− Ade
−tds − bKe−tis] = 0

Output feedback: u(s) = K(s)[r(s)− y(s)], ⇒

y(s) = ce−tos[sI − A−Ade
−tds]−1be−tisK(s)[r(s)− y(s)]

Control approach

Delays are unavoidable and cannot be compensated: ⇒

Take the delay out of the control loop (if possible) and control the “fast part" of the
process.
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When delays are relevant?
2. Control Issues

Delay/time constant

If the time delay is large w.r.t. the dominant time
constant

If the “control effort" is important

Otherwise ... delete or approximate
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Are delays always bad?
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Are delays always bad?
2. Control Issues

Resonant systems: Enlarging the bandwidth
Process: G(s) = 0.01

s(s2+0.1s+1)
; Controller: K(s) = 20; Sensor: F (s) = e−τs
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Are delays always bad?
2. Control Issues

Conditional stability
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Are delays always bad?
2. Control Issues

Stabilizing delays

Given a second order integrator, it cannot be stabilized by any static output
feedback ẍ(t)u(t); y(t) = x(t)

but it can be with u(t) = −k1y(t− t1)− k2y(t− t2)

A double oscillator cannot be (s4 + (ω2
1 + ω2

2)s
2 + ω2

1ω
2
2)y(s) = u(s) stabilized by

any static output feedback but it can be with u(t) = −ky(t− τ)

as far as sin(ω1τ) < 0 and sin(ω2τ) > 0.

k = −0.8, τ = 2, ω1 = π + 1;ω2 = π − 1
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3. Classical TD control
1. Introduction and motivation

2. Models and control issues

3. Classical approaches for time delayed plants control

Time delay effect and compensation

Time Delay Compensator (DTC): Smith predictor (SP)
PID control
Finite spectrum assignment (FSA)

Model predictive control (MPC) of TD systems

4. Smith predictor improvements: Modified, filtered, unified SP

5. MIMO Plants.

6. Some applications

Aircraft Pitch control; CSTR control; Steel rolling mill; NCS

7. Conclusions and open issues
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Delay effect
3. Classical TD control

SISO Input/output delay: Time response

Step response of G(s)e−sL, with L > 0.

L represents an actual delay or an approximation
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Delay effect
3. Classical TD control

SISO Input/output delay: Frequency response

|G(jω)| = |e−jωL| = 1, and ∠G(jω) = −ωL

Example P (s) = e−sL

(1+s)2
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Delay effect
3. Classical TD control

SISO Input/output delay: Controlled behavior

Process P (s) = 1
(1+1.5s)(1+0.4s)

e−sL.

Control C(s) = Kc
(1+Tis)

Tis
.

For L = 0 tuned with Kc = 1 e Ti = 1.2.

For L = 1.5 reduce gain to Kc = 0.2.
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“Ideal" control
3. Classical TD control

SISO Input/output delay: Controlled behavior

G(s)C(s) e−sL

r(t) y(t)
q(t)

The delay is out of the characteristic equation:

y(s) =
G(s)C(s)

1 +G(s)C(s)
e−sLr(s) +

G(s)

1 +G(s)C(s)
e−sLq(s)

y(s) = T (s)e−sLr(s) + Td(s)e
−sLq(s)

The design problem is:

Determine C(s) for T (s) and Td(s)

A 2-DoF controller can be used
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“Ideal" control
3. Classical TD control

Smith Predictor (SP)

P (s)

Gn(s)

C(s)

e−sLn

r(t) y(t)

q(t)

yp(t)

ŷ(t+ Ln)
ŷ(t)

ep(t)

Under perfect model, that is: P (s) = Pn(s) ⇒ G(s) = Gn(s);L = Ln

y(s) = T (s)e−sLr(s) +G(s)e−sL
[

1− T (s)e−sL
]

q(s)

Still the delay is out of the characteristic equation, but P (s) appears in y(s)
q(s)

. Time Delays in RT Control- CUL-UK. March 2012 - P. Albertos UPV 31/75



SP equivalent controller
3. Classical TD control

Simple control loop - Complex controller

P (s)

Gn(s)

C(s)

e−sL

r(t) y(t)

q(t)

yp(t)

ŷ(t+ Ln)
ŷ(t)

ep(t)

P (s)C(s)
r(t) y(t)

q(t)

Gn(s)− Pn(s)

Ceq(s)

Ceq =
C(s)

1 + C(s)(Gn(s)− Pn(s))
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PID control
3. Classical TD control

PID models and features (review)

Basic PID

C(s) = Kc(1 +
1

Tis
+ Tds) (series)

C(s) =
Kc(1 + 1

Tis
+ Tds)

αTds+ 1
(proper)

α is tuned for noise cancelation and robustness, α ∈ (0, 1).

Other implementations:

C(s) = Kc
1 + Tis

Tis

Tds+ 1

αTds+ 1
(series)

C(s) = Kp +
Ki

s
+

Kds

αKds+ 1
(parallel)
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PID control: Drawbacks
3. Classical TD control
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a) Steady-state error Process P (s) = 2e−5s

s(1+0.1s)
model Pn(s) =

2e−5.1s

s
.

Primary controller PI: C(s) = 0.25 8s+1
8s

. Step disturbance −0.05 at t = 75.

b) Internal instability Process P (s) = e−s

(s−1)
PI primary controller with Kc = 6, Ti = 1.

Closed-loop poles assigned at s = −2 e s = −3. Step disturbance −0.1 at t = 5.
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Approximated PID control
3. Classical TD control

Use Padé approximation: P (s) = K
1+Ts

e−sL; e−sL ≈ 1−0.5Ls
1+0.5Ls

P (s)Ce(s)
R(s) Y (s)

1. Design a PID for: Pn(s) =
K

1+Ts
1−0.5Ls
1+0.5Ls

2. Design a controller PI C(s) =
K1(1+sT1)

sT1
for G(s) = K

1+Ts

The SP equivalent controller is: Ce =
C(s)

1+C(s)[Gn(s)−Pn(s)]

If T1 = T results: Ce(s) =
K1(1+Ts)

Ts+K1K(1−e−sL)

The controller is:

Ce(s) = Kc
1 + Tis

Tis

Tds+ 1

αTds+ 1

with: Kc = T
(L+T0)K

, Ti = T , Td = 0.5L, α = T0
T0+L

To get a closed-loop time constant T0 = T
KK1
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PID control extensions
3. Classical TD control

2-DoF PID control

P (s)C(s)
R(s) Y (s)

Q(s)

F (s)

2-DoF structure:

- closed-loop poles for disturbance rejection: C(s) = Kc
(1+Tis+TiTds

2)
Tis(Tf+1)

- set-point filter to smooth the reference response: F (s) = 1+bTis+cTiTds
2

1+Tis+TiTds
2

Unstable plants

P (s)

P2(s)

C ′(s)
R(s) Y (s)

Q(s)

F ′(s)

Ko

Sequence: 1) Stabilizing controller Ko; 2) PID for equivalent plant P2; 3) Set-point
filter
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PID tuning
3. Classical TD control

Dominant delay

Stabilize P (s) with simplest P controller: K0

Approximate P2 = Ke−sL

(1+Ts)

Use PID controller C(s) = Kc
(1+Ts)(1+0.5Ls)
Ts(1+0.5αLs)

Define the closed-loop time constant T0 as a function of L: T0
L

= α
1−α

For each α, the nominal response is the same (time scaled by L).

The greater α is the more robust the system results, and the slower it is!

Define the set-point filter F (s).
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PID control example
3. Classical TD control

Design example

Process P (s) = 0.2e−5s

s(1+s)(1+0.5s)(1+0.1s)
, Model Pn(s) =

0.2e−5s

s
.

tune K0 = 0.3 to stabilize P2 ≈ 0.33e−5s

(1+20s)

Tuning for α = 0.2 Case 1: b = c = 1, Case 2: b = 0.43; c = 0.5.
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PID control example
3. Classical TD control

2DoF-SP.

P (s)

Gn(s)− Pn(s)

C(s)

Ceq(s)
R(s) Y (s)

Q(s)

F (s)

For Pn =
Kpe

−sLn

1+Ts
and Gn =

Kp

1+Ts
:

- Choose C(s) = Kc(1 + 1
sTi

), with Ti = T : 1 + C(s)Gn(s) = 1 +
kcKp

sTi

- Define the required closed-loop time constant T0, by: Kc = Ti

KpT0

- Tune the input filter F (s) = 1+sT0
1+sT1

This allows dealing with tracking (T1) and disturbances (T0):

Y (s)

R(s)
=

e−sLn

1 + sT1
&

Y (s)

Q(s)
=
K0e

−sLn

1 + sT

[

1−
e−sLn

1 + sT0

]

- Simple tuning for delay dominant systems: T0 = T1 = T ⇒ Kc = 1
Kp

(Predictive PI Controller )
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2DoF-SP PID control
3. Classical TD control
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Plant: P (s) = 5e−10s

(1+s)8
; Model: Pn(s) = 5e−15s

1+3s
.

First tune a PID with α = 0.3 and then:

Kc =
0.35(L+2T )

KpL
Ti = T + 0.5L Td = LT

L+2T
Tf = 0.15L b = 0.80 c = 1

As a result: PPI is faster and less oscillatory.

In general, the SP presents a good tradeoff between performance and robustness.
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4. SP improvements
1. Introduction and motivation

2. Models and control issues

3. Classical time delayed plants control

4. Smith predictor improvements

Modified SP
Filtered SP
Unified SP

5. MIMO Plants.

6. Some applications

Aircraft Pitch control; CSTR control; Steel rolling mill; NCS

7. Conclusions and open issues
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Modified SP
4. SP Improvements

Proposed by Zhong
A generalized controller Q(s) is added:
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Modified SP
4. SP Improvements

Zhong implementation example
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Modified SP
4. SP Improvements

Proposed by Tao: Rejecting load disturbances
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Proposed by Xiang: Dealing with integrative processes
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Filtered SP
4. SP Improvements

[Normey-Rico]: SP with prediction filter Fr(s), to reduce modeling errors:

P (s)

Fr(s)

Gn(s)

C(s)

e−sL

r(t) y(t)

q(t)

yp(t)

ŷ(t+ Ln)
ŷ(t)

P (s)

Fr(s)

C(s)
r(t) y(t)

q(t)

Gn(s) Pn(s)
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FSP: Equivalent controller
4. SP improvements

P (s)

Fr(s)

C(s)
r(t) y(t)

q(t)

Gn − FrPn

Ceq(s)

Y (s)

R(s)
=

Ceq(s)P (s)

1 + Ceq(s)Fr(s)P (s)
&

Y (s)

R(s)
=

Ceq(s)

1 + Ceq(s)Fr(s)P (s)

Fr should be “low-pass"

Avoid low time constant cancelation

Allows disturbance rejection
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A global setting of the SP
4. SP Improvements

Most proposals can be fitted in this schema

If G1 = G6 = G5 = 1

G3 applies for servo; G4 applies for regulation and G2 applies for model mismatch.

Difficult tuning of the many controllers.

. Time Delays in RT Control- CUL-UK. March 2012 - P. Albertos UPV 47/75



5. MIMO Plants
1. Introduction and motivation

2. Models and control issues

3. Classical time delayed plants control

4. Smith predictor improvements

5. MIMO Plants.
A SISO stable output predictor. GP robustness properties.

Multiple delays. Extension to MIMO plants

MIMO plants decoupling

A complete solution?

6. Some applications

Aircraft Pitch control; CSTR control; Steel rolling mill; NCS

7. Conclusions and open issues
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Delayed MIMO plants
5. MIMO plants

y(z) = P (z)u(z); P (z) = [gij(z)z
−dij ]

1. Measurement delay (z−dj,o ), different for each output: P (z) = D(z)G(z)

where D(z) is a diagonal matrix of delays and G(z) is the “fast" model of the plant.
SP can be used with Pn(z) = Dn(z)Gn(z)

2. Input delay (z−dj,i ), different for each input.
Now P (z) = G(z)D(z) and the only option is to increment the delays at the
required inputs to get a common delay. Then Pn(z) = zdnGn(z) and SP is
applicable

3. Internal delay (z−dj ), cross-coupling delays, j = 1, 2, . . ..
Classical SP is not applicable anymore
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A Generalized Predictor
SISO plants

For SISO I/O delayed plant: Pp(z) = gp(z)z−dp

xk+1 = Axk + buk; yk = cxk; g(z) = c(zI −A)−1b =
n(z)

d(z)

+

+

+ +

u
y

+
+ n

†
y

w

)(zY

+

-

)(zK
r ( )P z

Define:

y†(z) := ψd(z)u(z) + y(z) = g†(z)u(z); g† =
n†(z)

n(z)
g(z) = cAd(zI − A)−1b

ψd(z) = cA−d
d

∑

i=1

Ai−1bz−i
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GP for MIMO plants
5. MIMO plants

G(z) = C(zI −A)−1B =









c1
...
cm









(zI −A)−1
[

b1 · · · bm

]

Define:

Ψ(z) :=









ψ11(z) · · · ψ1m(z)

...
. . .

...
ψm1(z) · · · ψmm(z)









; ψij(z) = ciA
−dij

dij
∑

k=1

Ak−1bjz
−k

This leads to: G†(z) =









g
†
11(z) · · · g

†
1m(z)

...
. . .

...
g
†
m1(z) · · · g

†
mm(z)









≡ (Ψ(z) + P (z))

g
†
ij(z) ≡ ψij(z) + pij(z)
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Design procedure
5. MIMO plants
.
Given the DT full plant model, P (z)

Compute the rational transfer matrix G(z),

Get the undelayed output transfer matrix G†(z),

Compute the predictor filter Ψ(z),

Stabilize the MIMO system by controller K(z), for G†(z), such that

H(z) = P (z)K(z)[I +G†(z)K(z)]−1

For the previously stabilized plant, H(z), improve the controlled system
performance by, a robust performance controller Q(z).

+

+

+ +

u
y

+
+ n

†
y

w

)(zY

+

-

)(zK
r ( )P z

-

y

+

)(zH
r

-

+

w

( )Q z( )F z

)(zH
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Design example
5. MIMO plants

Plant model, P (s), h = 0.1s

+

+

+ +

u
y

+
+ n

†
y

w

)(zY

+

-

)(zK
r ( )P z

P (s) =

[

e−0.5s

s−1
0.5e−0.7s

s+1
0.1e−0.3s

10s+1
e−0.7s

s

]

⇒ P (z) =

[

0.10517z−5

z−1.105
0.04758z−7

z−0.9048
0.000995z−3

z−0.99
0.1
z−1

]

G†(z) =

[

0.063786
z−1.105

0.095829
z−0.9048

0.0010249
z−0.99

0.1
z−1

]
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Design example
5. MIMO plants
.
For G†(z),

Design the controller: K(z) =

[

3.8625(z−0.9823)
z−1

0.97215

−0.070359 0.58583

]

leading to H(z) = P (z)K(z)[I +G†(z)K(z)]−1

with static gain: H(1) =

[

1.6487 0

0.0050 1.0002

]

Choose the IMC controller such that Q = Q0 with

Q0 = H(1)−1 =

[

0.6065 0

−0.0030 0.998

]

and prefilter: F (z) =

[

0.0198
z−0.9802

0

0 0.0198
z−0.9802

]
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Design example
5. MIMO plant

Preliminary results
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Step responses. K(z) being designed by loop shaping.

. Time Delays in RT Control- CUL-UK. March 2012 - P. Albertos UPV 55/75



Design example
5. MIMO plants

Improved robustness. For Pp(s) =

[

e−0.6s

s−1.1
0.6e−0.8s

s+1.1
0.1e−0.3s

10s+1
1.1e−0.7s

s

]

The system becomes unstable with previous K and Q.

Design Q = Q0F0 with F0(z) =

[

0.00995
z−0.99

0

0 0.00995
z−0.99

]
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Decoupling
5. MIMO plants

P (z) = [gij(z)z
−dij ]

Dynamic precompensator: P (z) = M(z)K−1
d

(z), M(z) being diagonal.
All matrices making M = KdP diagonal are Kd = adj(P )K, for any K.

State Feedback (no delay): For xk+1 = Axk +Buk; yk = Cxk

uk = KDxk + Fvk; F =













1CA
r1−1B

2CA
r2−1B

...

mCA
rm−1B













−1

KD = −F













1CA
r1

2CA
r2

...

mCA
rm













⇒ y(z) =













z−r1 0 0 0

0 z−r2 0 0

...
...

0 0 0 z−rm













v(z)
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Decoupling
5. MIMO plants

Approximated decoupling

Approximate a first+order plus time-delay of the system (each TF)

Approximate any time constant in each column (1 + τijs) by
(1 + τsjs((1 + τij − τsj)s where τsj = mini τij

Start with K = I, then Kd = adj(P )

Extract the larger common time delay and time constant from any column of
Kd.
Apply a controller design for each diagonal element

Example P (s) =

[

3
1+9s

e−3s 2
1+6s

e−2s

1
1+5s

e−4s 2
1+7s

e−4s

]

⇒ Kd(s) =

[

2
1+2s

−2

−1 3
1+3s

e−s

]

Leading to

M(s) =

[

− 2
1+6s

e−2s + 6
(1+6s)(1+3s)(1+2s)

e−3s 0

0 −2
1+5s

e−4s + 6
(1+5s)(1+3s)(1+2s)

e−5s

]

High cost for decoupling!!
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Decoupling
5. MIMO plants

Disturbance cancelation
Estimate the state
Estimate the “single" outputs and observe the “disturbances":
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Multidelays
5. MIMO plants

Optimal control: y(z) =
∑p

i=1 ci[zI − A]−1bz−diu(z)
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Multidelays: Example
5. MIMO plants

Assume: y(s) = 5+(1+s)e−0.6s

(1+2s)(1+1.5s)
, h = 0.1s

G1(z) =
0.0080163(z+0.9619)
(z−0.9512)(z−0.9355)

= 0.008016z+0.007711
z2−1.887z+0.8899

G2(z) =
0.033048(z−0.9048)z−6

(z−0.9512)(z−0.9355)
= 0.03305z−0.0299

z2−1.887z+0.8899
z−6

c̄ = c1 + c2A
−6
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Multidelays: Example
5. MIMO plants

Disturbance rejection y(z) =
∑p

i=1 ci[zI −A]−1bz−diu(z)

G1(z) =
0.0080163(z+0.9619)
(z−0.9512)(z−0.9355)

;G−1
1 (z) =

(z−0.9512)(z−0.9355)
0.0080163(z+0.9619)

G2(z) =
0.033048(z−0.9048)z−400

((z−0.9512)(z−0.9355)
; L = 40s; Input disturbance at t = 70s

F (z) =
(1−λ)
(z−λ)

; λ = 0.01
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6. Some applications
1. Introduction and motivation

2. Models and control issues

3. Classical time delayed plants control

4. Smith predictor improvements

5. MIMO Plants.

6. Some applications

Aircraft Pitch control
CSTR control
Steel rolling mill
Networked control systems

7. Conclusions and open issues
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Pitch Angle Control
6. Some Applications

Assume a simplified longitudinal model of the aircraft
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Pitch Angle Control
6. Some Applications
.
State variables: the angle of attack α, the pitch rate q and the pitch angle θ, and the
control variable is the elevator deflection δe.

A =







0.95122 0.042956 0

0.039026 0.94844 0

0.056289 2.7608 1






; b =







−0.00029667

−0.00855

−0.012226







Control index
J =

∞
∑

k=0

[α2
k + 10q2k + θ2k + 0.1δ2e,k];⇒ u∗k = Kxk

Measurement delay (do = 2): xk = Adoxk−do +WdoUk−do

where

Wdo = W2 =







−0.0003 −0.0006

−0.0086 −0.0081

−0.0122 −0.0358






; Ado = A2 =







0.9065 0.0816 0

0.0741 .9012 0

0.2176 5.3817 1







u∗k = Kxk =
[

4.4216 37.2849 2.6412
]

xk ⇒ u∗k = K[Adoxk−do+WdoUk−do ]
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Pitch Angle Control
6. Some Applications

Input delay: di = 4

u∗k = K[W4Uk−4+A
4xk]; W4 =







−0.0003 −0.0006 −0.0010 −0.0013

−0.0086 −0.0081 −0.0077 −0.0074

−0.0122 −0.0358 −0.0583 −0.0797
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Pitch Angle Control
6. Some Applications

Results
a) Output delay: do = 2; b) Input delay: di = 4
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OPTIMAL CONTROL APPLICATIONS AND METHODS Optim. Control Appl. Meth.
(2011) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI:
10.1002/oca.1007
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CSTR Control
6. Some Applications

Assume a simplified linear reduced order DT model of the CSTR

yk =

[

x1,k−do,1

x2,k−do,2

]

Tj0 , Qj0

T0 , C  , Q0

LT
TT

VC1

VC2

A B C , Ta

T(t)

Q, T, Ca

Q, Tj j

a0

xk+1 = Axk +Adxk−d +B

[

u1,k−di,1

u2,k−di,2

]

with the following matrices: B =

[

0.3776 0.08428

−3.878 −6.6

]

A =

[

0.7442 −0.03663

4.576 1.735

]

; Ad =

[

0.01819 −0.000355

0.04433 0.02779

]

;
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CSTR Control
6. Some Applications

Output delays are treated as before

Input delays, a state vector is associated with each input

[

x1

x2

]

k+1

=

[

A 0

0 A

][

x1

x2

]

k

+

[

B1 0

0 B2

][

u1

u2

]

k

= Ā

[

x1

x2

]

k

+ B̄

[

u1

u2

]

k

and the process state is given by xk = x1,k−di,1 + x2,k−di,2

Each delayed partial state can be computed by applying single delay for each input

State delay is compensated by:

uk = Kxk +Kdxk−d

allowing to assign the poles of the controlled plant provided that

Controllability. The pair (A,B) is controllable
Delay cancelation. There exists Kd such that Ad +BKd = 0.
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Hot Rolling Mill
6. Some Applications

Temperature model

. .

∂Ti(t, x)

∂t
= −vi

∂Ti(t, x)

∂x
+ a[Ta − Ti(t, x)] + b[T 4

a − Ti(t, x)
4]; Ti(t, 0) = Tin,i(t)

Gi
T = Kie

−λis; Gi
v = −

biKi

s
(1− e−λis)
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Hot Rolling Mill
6. Some Applications

Control schema: single stand

Cn(s) is a PI controller (sliding mode, IMC...) to counteract changes in exit
temperature
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Hot Rolling Mill
6. Some Applications

Control schema: 3-stand

α weights the stand temperature changes due to inlet temperature changes

γ apportions the speed changes based on the pre-scheduled reduction.
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Networked Control Systems
6. Some Applications

Sensor
SamplerActuator

Controller

Physical
Plant

w

+ +

n

yu

DelayDelay
Network

+
+

sctcat

Non-uniform
ObserverPredictor

))(( kky SCs t-)(kxob( )x k h+

Predictor-Observer

)(ku
h

z
- ( )u k h-

NCS: Delay is random

Data missing. Packet drop

Undelayed signal estimator
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Networked Control Systems
6. Some Applications

Data missing.

Fixed delay
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7. Conclusions
Conclusions

Time delays (as non linearities) are unavoidable and (usually) degrade
performance

There is not a unique treatment for time delays (as for non linear systems)

Single input/output delays are easily treated, even for unstable (NMP) plants

State (and distributed) delays require deeper analysis

Additional delays, as well as cross-loops delays can be counteracted

By feedforward compensation based on estimations
This requires very good plant models

Stabilizing and optimal control are feasible

Tracking and disturbance rejection are questionable

Random and time varying delays (NCS) require stochastic tools
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