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What is a Soft Sensor?

.| Product
samples

Lab
Analysis

Online Analyzer

Process

. Process
measurements
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Analytical

Quality variable
measured every few
hours

Expensive

High Maintenance
Cost

Inferential

Quality variables
measured every
few seconds or

measurements to control quality
The quality measure may only be

infrequently on-line
Reliability of on-line instruments

Automatic control and optimization
schemes cannot be implemented.
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Difficult to provide reliable, fast, on-line

available as a laboratory analysis or very

» Lead to excessive off-specification of products

» Drafting, fouling, sample system failure etc.
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Measurement Problems

Solutions 1: Manual Control

e Productivity is quantified by specification upon which
the product is sold, eg. purity, physical or chemical
properties

» Primary variables: difficult to measure on-line

ity ‘ ualhy = (Tormparatiss? Prassurs? Flows?)
\ /' Primary outputs | g
INPUTS ) |PROCESS| OUTPUTS /‘) & ‘ 3 ~_§ ;
1/ 'Secondary outputs | a4 E !

e The other output (eg. temperature, flow and pressure)
» Secondary variables: easily measured on-line
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e Common approach to effecting control on process is
to control it manually

NHEEHN
. Nm “.n
W W
NOPE
i

e Return of information for control purpose from
laboratory is slow and irregular

e |ts success depends on the operator’s training and
experience
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-6
Hardware Sensor Problems
205 4% O Time—consur_ning_maintenance
0 Need for calibration
8% [0 Aged deterioration
O Insufficient accuracy
O Long dead-time, Slow dynamics
[ Large noise
O Low reproducibility
[J Others
Questionnaire to 26 companies (JSPS PSE 143 committee, 2003)
Copyright (C) 2013 CPSE Lab. 6

Secondary
controller

PROCESS

Fast Loop

Slow Lojop

Delay

e The slow loop dictated by the delay of a measurement device
e Assumption: If the secondary variable is kept at some value, then the

primary variable also be kept at some level!
» Often employed in the product composition control of distillation columns
» Two control loops:
— Fast secondary loop: a tray temperature
— Slow primary loop: product composition

e Slow loop is used to correct the set-point of the secondary loop
e Drawbacks:

» Disturbances affecting the secondary variable may not affect the primary
variable

» The relationship between the primary variable and the secondary variable
is non-linear, and can change depending on the operating conditions

Copyright (C) 2013 CPSE Lab.
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Motivation: Rich Data

_Motivation: What Can a Soft Sensor Do? .

Material Management Produchon Execution Material Management

q @@ '..@' @@ r

N
T

e Huge data
e Little information or knowledge

Klatt and Marquardt. Computers and Chemical Engineering, 2009, 33: 536-550.
(Copyright (C) 2013 CPSE Lab. 2 c

e Using a good soft sensor, we can do many
things in PSE:
» Online Quality Prediction
» Process Fault Detection
» Process Monitoring
» Sensor Fault Detection
» Inferential Control

» ...

opyright (C) 2013 CPSE Lab. i

Solutions 3: Inferential Measurement

~ Types of Models for Soft Sensor Developing

-12

e Inferential measurement allows process quality, or a difficult to
measure process variables, to be inferred from other easily made
plant measurements such as pressure, flow or temperature.

e Soft(ware) sensor: Model which estimates immeasurable process
states based on easy to measure input and output variables

» Software sensor, virtual soft sensor, smart sensor, virtual
analyzer, inferential control
Inputs | Primary output
‘ ~ PROCESS N

! Secondary outputs

e First principle models
» Based on balance and phenomenological equations
» Process knowledge required
» Comparatively expensive

e Data driven models
» ldentified using process data
» Comparatively inexpensive

Copyright (C) 2013 CPSE Lab. Set point Copyright (C) 2013 CPSE Lab.
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First Principle Models vs. Data Driven Models

-15

Current Popular Methods

First Principle Models Data Driven (Empirical) Models

Method

Fundamental Principles Experiments

Advantages

Good for process design since
it is easy to use

(Easy, less effort)

Excellent relationships
[ between parameters in

{ physical systems and the
transient behavior of the
systems

Disadvantages

Less accuracy; do not provide
enough information to satisfy all
process design and analysis
requirement

e Complex. ex. distillation
column, 10 compounds, 50
trays 500 diff. Eqs

e Large engineering effort
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Multivariable

@ PCA Statistical
PLS Regression
@ MLP
@ REF Artificial
@® SOM Neural
@ RBNN Networks
® svMm
NFS
® Regression Fuzzy
® Misc. Inference
System

Kadlec P, et al. Comput. Chem. Eng., 2009, 33(4): 795-814.
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Current Popular Methods

Copyright (C) 2013 CPSE Lab.

Outline -
1. Background and Motivation
2. Current methods: a simple review
3. Some Challenges
4. Recent results
5. Concluding remarks

Computational Learning Methods

Multivatiable

Soft Computing/

Statistical 4 -
2 Machine Learning
Rrg_l_‘t‘ssmn i %'\ :
7

| PCR | [ ps ] ANN |SVRHLSSVR‘ ‘FIS‘ [Gpu‘

\1 KPTC‘R | | KPLS |

V//

Hybrid: NNPLS, Neuro-fuzzy, NNPCR, ...

| MLP, RBF, Wavenet, SOM. ... |

16
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Methods with Applications

PLS : A Geometric Interpretation

-19

40
v 30 7+PLS »
2 -#- ANN /
'*5 20 |+ SSID
* 10 | SVM/ISVR

0

N %) \o) A &)
O O S S S
NN N N\
Year

N > »
q/QQ q/QQ Q,QQ

ANN is dominant in the literature while PLS is popular in industry.

(Kano and Nakagawa, Comput. Chem. Eng., 2008)

X- Plane Y- Plane Ea_ch gbject is one

1 4 point in the X-space
and one point in the
e oo Y-space.

The data matrices X
and Y, thus they are
connected swarms
of points in these
two spaces
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PLS : A Geometric Interpretation

-20
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[ o o -18
Methods with Applications
methodology

process Phys MRA PLS O.L. ANN JIT Gray total
distillation 20 256 41 6 0 5 3 331
reaction 5 32 43 0 0 5 1 86
polymerization 0 4 8 0 3 0 5 20
others 0 il 1 0 0 0 0 2
total 25 293 93 6 3 10 9 439
Phys: physical model

MRA: multiple regression analysis

PLS: partial least squares regression

;L other linear regression

ANN:  artificial neural network

JIE: Just-in-time model

Gray: gray-box model or hybrid model between

physical model and statistical model
(Kano and Ogawa, J. Process Control, 2010)
18
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Calculate the average
X- Plane Y- Plane of each vanab]e. The
4 4 vectors of variable
averages are points in
the X and Y-spaces.

Subtracting averages
from the two data
matrices, corresponds
to moving their
origins to the centre
of their respective
data swarms.

Copyright (C) 2013 CPSE Lab.
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e The first PLS
component is a line in
X-space and a line in
Y-space, through the
average points, such
that:

» the lines well
approximate the data
(maximize variance
explained), and

» the projections (t, and
u,) are well correlated
(maximize correlation)

projection

of point 7

X- Plane Y- Plane
rF s

component
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PLS : A Geometric Interpretation

-22

3 u1
P The projected
. coordinates in the two
- > spaces (u; and t, in Y and
S ! X) are correlated in the
° inner relation
slope = 1.0

Copyright (C) 2013 CPSE Lab.

PLS : A Geometric Interpretation

The 2nd PLS lines in
the X and Y-spaces
pass through the
average points.

These lines improve
the approximation
and the correlation as
much as possible.

Copyright (C) 2013 CPSE Lab.

-24

The second
projection
coordinates (u, and
t,) correlate, but
usually less

/ well than the first.

slope = 1.0

Copyright (C) 2013 CPSE Lab.
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PLS : A Geometric Interpretation

e The PLS components
together form planes in
the X and Y-space.
» Scores: t;, t, and u;,
u, location on planes
» Loadings: P and Q
orientation of planes
» DModX — distance of
observation from
plane in the X-space
planes » DModY — distance of
observation from
plane in the Y-space

A A

(—projectio

f “
o !
%

e/
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PLS is Simultaneous Dimension -2
Reduction and Regression

max Var(scores) Corr?(response,scores)
A

Dimension Reduction
(PCA)

Regression

ICopyright (C) 2013 CPSE Lab.

Using PLS Model

- 27

e Note: if you use the regression form of PLS (Y=XB), then
» cannot check data for consistency
» cannot handle missing data

e Solution:

» Use latent variable (LV) form of PLS model: calculate t's from
Xnew @Nd then get predictions from the t's

1. Is new data vector, X, consistent with past operation?
» calculate the t-scores, SPE, and T2 values coming from X,
» if SPE and T2 are below their limits, then make prediction
» if not, then:
— flag bad values in x,,, as missing and retry the PLS model
— or, discontinue soft sensor until process problems are corrected

Copyright (C) 2013 CPSE Lab.

Using PLS model

-28

2. Handling missing data

» Must use the LV form of model to handle missing data
N Xpew

» Calculate the new t's with missing data algorithm: t,,,

ypred = tlnewcl + t2newCZ +e

» Do not use the regression form of the PLS model:

T
ypred = Xnewb

Copyright (C) 2013 CPSE Lab.
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: Hybrid
Data structures Processes o
Data structures
End Properties
X1 [N\
X3 Y

)/

X2

Initial Conditions Variable Trajectories
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Image-based Soft Sensor for Monitoring and. 5
Feedback Control of Snack Food Quality

-31
PCA Score Plot Histograms
Non-seasoned Low-seasoned High-seasoned
Copyright (C) 2013 CPSE Lab.
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Camera
Computer
Unseasoned Tumbler
Product
A
Conveyor Belt
Seasoning

Lab Analysis

ICopyright (C) 2013 CPSE Lab.

Superposition of the
score plots from 3
sample images on top
of the mask

S STORCRCROOO=O-O=O=O K K M F KL
PP

/,
P

Cumulative distribution of pixels

=== Non-seasoned
=== | ow-seasoned

‘ High-seasoned
—,‘:\':Z-::)-:‘l\:-}.)i':‘:‘:

At

Distribution of pixels
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Model to Predict Seasoning

-35

Ej Example: Sulphur Recovery Unit

H,S + 1.50,—H,0 + SO, 2H,S + SO, —»3S + 2H,0

HATORAL o ©
- l» O CATALYTIC: CATALYTIC E ! TaT
m:m,sj t REACTOR REACTOR =] 1 umrr
1 oas | !
1 Hliia T | T no!
- = =
1 :
1 b [ _conoonser | | 1
1 : s 58 5 i
- .
AIR (04 | il L
l | I |r |
| 1
l
i 1

acid gas flow — 4

air inlet flow —_—

H,S and SO, Analyzer

natural gas flow ] Dvnamic [HQS] -2 [SOQ]
temperature difference in Soft Sensor
first catalytic reactor “odel

temperature difference in
sacond catalytic reactor
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-33
Concentration
AAAAAAA I
Feature PLS
xtraction Regression s
I
X Y
Cumulative Seasoning
Histogram Measurements
Model for Seasoning Level
Copyright (C) 2013 CPSE Lab.
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Example: Extruder

e Predicting a lab-measured property: X, (distillate
composition)
e Data used: 45 tags around the unit, and its ancillary

equipment:
» flows, temperatures, pressure
» calculated variables from a previous model:

log(Xp) = function of process measurements

some of the terms in the above equation are non-linear, so
add these into the model as new variables

1
log(x,) = --- + log(T,,) -t (To)*% + -

12

Copyright (C) 2013 CPSE Lab.

e Meltindex of polymer is observed to be nonlinearly related to

variables monitored in the extruder.

Gas and

Polymer
Online Analyzer
e .
ik Extruder Schematic o -
Lc Palymer Pellets N 30 mins bias
1_'| and Waler :_/ u Pd ating
- & B i
_ . w‘ pwe | [ 7PTY Soft Sensor
. NG
e Intine, 53 Pelletisar \
ﬂD ST PI) (P (PN P = )
AP CPAUZ A VA VANCY, //;‘ng
~

P T —

e g
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Caution 1: Collinear Variables

- 37

Can These Models be Used ?

-39

e Correlation versus Causation
e Modeling with collinear variables

Example:
Output: y INputs: Xy, X,, X3, X, X5
“True” cause and effect relationship (unknown): y = 1.0x, + e
Data: the 5 x-variables are collinear (in practice often nearly so)

Y X1 X3 X3 X4 X5
-1.092 -1 -1 -1 -1 -1
2.074 2 2 2 2 2

-0.581| -0.5 -0.5 -0.5 -0.5 -0.5
0.888 0.9 0.9 0.9 0.9 0.9

Copyright (C) 2013 CPSE Lab.

e They are all wrong from a cause and effect point of
view! They just model the correlation structure in the
historical data set - Correlation models only

e But each model provides equally good predictions of
y as long as the process remains the same
(correlation structure stays constant).

e Models cannot be used to change the process in a
way that would lead to a different correlation
structure among the variables (e.g. optimization).

» Since predictions are not valid outside the correlation
structure in the data used to build the model.

Copyright (C) 2013 CPSE Lab.

Example: Collinear Variables

-38

Can These Models be Used ?

-40

Assuming a linear relationship, we fit the model of the form:
y =b, +bx +b,x, +b,X; +b,X, +b. X, + &
1. Least squares (linear regression)
XTX matrix : no solution if singular, OR poor estimates if nearly

singular
2. Step-wise linear regression
3. PLS

y =0.2x, +0.2x, + 0.2x, +0.2x, + 0.2X; + &

4. Neural networks

y =0.63x, +0.36x, + 0.09%, + 0.22x, +0.30x, + &

ICopyright (C) 2013 CPSE Lab.

® The problem is not the model but the data —
collinearity is a result of the mode of operation.
Real process data are often close to being collinear.

® To imply cause and effect for each variable, one
needs designed experiments to generate the data.

Copyright (C) 2013 CPSE Lab.
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Caution 2: Feedback Control

-41

“True” cause and effect model:

% purity = 5, + b, - reflux

Regression model from data:

% purity

reflux

Distillation column

(Monsanto)

%o purity = ¢, - ¢, - reflux
e

Models the effect of the feedback control (i.e. the natural
correlation structure in the data) not of the causal effect in the
process!

Copyright (C) 2013 CPSE Lab.

Closed-loop (feedback
control) data

The true cause and effect model The correlation model

Copyright (C) 2013 CPSE Lab.

Example: Polymer Production Plant -

-43
To Get Causal Models: Need DOE
e Historical data is good for
» Building model for monitoring
» Soft sensors
» Exploratory analysis of process operating problems
— eg. Score and loading plots, contribution plots, to drill-down
to variables related to the problem.
e For causal model, eg. for control or optimization
» Need independent effects of all manipulated variables
» Generally need designed experiments in these variables
» Use statistical design (eg. factorials)
» Do not change one factor at a time
Copyright (C) 2013 CPSE Lab.
44

A polymerization process
» Around 50 available X-variables
» Melt index is the property of interest (Y)

» Company fit large amount of data with neural network regression
model

» Good fit to the data but very poor predictions with new data
e Four grades (four Y set-points); 5, 10, 15, 20

e Operating data collected for each grade
» Appears to be simple problem:
— fit model to data, then
— use model for prediction

But what data should be used? This is the key issue.

Copyright (C) 2013 CPSE Lab.
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Polymer Production Plant

- 45

Blender

T

Monomer

Catalyst

Comonomeg’

Reactor

Separator Extruder

Copyright (C) 2013 CPSE Lab.

— Products

Grade Changeover Operation

- 46

Pattern A

Grade B

Grade A Grade B

Grade B
1. Not time but grade

optimal operation Instantaneous
2. Runaway reaction grade

Copyright (C) 2013 CPs& Lau.

Regression Fit of All Data

-47
Y vs X Data for 4 Grades
0
Y
2 .
e
20t ‘B
" =
’ ‘:" R ot
10 _: "‘._- *
oy 24
5 i
SN
0 -
-5 L
0 5 10 15 20 25
X
Copyright (C) 2013 CPSE Lab.
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y=090x +1.29
Single model (NN or PLS) fitted to data

Copyright (C) 2013 CPSE Lab.
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L= Regression Fit of Data from One Grade 9 Problems of Current Soft Sensors

-

y=-174x +27.3

Y 0 — | Separate model (NN or PLS) fitted to data of one grade

| .. L AULL | VALLIL) LD h e Gioniaoivivas e U
e burden of modeling itself 14 %

“ burden of data preprocessing 7%

5 inadequate accuracy since installation 7%

ol inadequate accuracy due to changes 7%

in operating conditions

| difficulty in evaluating reliability 7%

o unjustifiable cost performance 7%

5

(Kano and Ogawa, J. Process Control, 2010)

Copyright (C) 2013 CPSE Lab.

= - 50 ° LR ) 352
Outline Reliability of a Soft Sensor
1 BaCkground and Motivation e A fixed soft sensor is not enough (Reliability)
2. Current methods: asim p|e review » Changes in process characteristics and
operating conditions
3. Some Chall enges » Data are insufficient to build a global and good soft sensor
for complex processes
4 Recent resu ItS » The most serious, practical problem is how to keep the
5. Concludi ng rem arks high estimation performance

e Model Maintenance is important but difficult

Copyright (C) 2013 CPSE Lab. Copyright (C) 2013 CPSE Lab.
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- 53

Soft Sensor Adaptation

- 65

Soft Sensor Adaptation

e Adaptation of a soft sensor
» Reconstruction of a global fixed soft sensor is difficult in
practice
e Recursive approaches
» Update a model recursively
— Exponentially Weighted PLS (Dayal and MacGregor, 1997)
— Recursive PLS (Qin, 1998)
— Recursive LSSVR (Liu et al., 2009)
— Extensions and Applications
» Unable to cope with abrupt changes
» Insufficient for multi-mode processes

Copyright (C) 2013 CPSE Lab.

e Alternative: Just-in-time learning (JITL) methods

» Build a local model from neighbor samples stored in a
database on demand (in a JIT manner)

» Similar input for similar output
e Advantages of JITL methods
» Treat changes in process characteristics
» Without model maintenance
» Local fitting ability for better prediction

Copyright (C) 2013 CPSE Lab.

[:j Improved Methods: PCA as an Example >

Two Modeling Manners: 56
1Global Learning vs Just-in-time Learning

Principle
Component
Analysis

Recursive Time-Lagged M cwin-g; Window
l - PCA PCA PCA

®Nonlinear: y = f(u) is essentially nonlinear for most complex
chemical processes.
@®Adaptive: to capture different complicated characteristics

Kadlec P, et al. Comput. Chem. Eng., 2009, 33(4): 795-814.

Copyright (C) 2013 CPSE Lab.

Global Learning JITL (Lazy Lear\pjng)

/Al

Modeling Query Sample Query Sample T .
Methods Xq Xq > Model » Prediction
il -
— > Global Model Sample Set ‘ {
* —
1 t icti .. .
SRS S Prediction Similar | Modeling
Once the model is Samples ] Methods
obtained, the sample N -
set is discarde dp Once the prediction is obtained, the
: model is discarded.

Yi Liu, et al. Ind. Eng. Chem. Res., 2012, 51(11): 4313-4327.

Copyright (C) 2013 CPSE Lab.
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Outline

- 57

Recent results

abkhwbE

Copyright (C) 2013 CPSE Lab.

Background and Motivation
Current methods: a simple review
Some Challenges

Concluding remarks

g =1-.-.G New sample

Xq
P(g ‘Xq ) >06,0=1---,G Steady grade: LSSVR model
max{P(g Xq )} <0,9=1---,G Transitions: JLSSVR model

Liu, Y. and Chen, J. (2013) “Dynamic Process Fault Monitoring Based on Neural Network and PCA, Integrated Soft Sensor
Using Just-in-time Support Vector Regression and Probabilistic Analysis for Quality Prediction of Multi-Grade Processes”
J. Process Contr. (In Press).

Copyright (C) 2013 CPSE Lab.
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Prediction Performance Comparisons for Steady and - ¢°
 Transitional Modes Using Different Soft Sensors

e Increasing demand for
product diversification results
in more stringent
specifications requirements in
properties.

Production of multi-grade
products requires frequently
changing operating conditions
of reactors.

Polymerization is a highly
nonlinear process, which
usually produces products,
e.g., melt index (Ml), with
multiple quality grades.

ICopyright (C) 2013 CPSE Lab.

c, (molr)

o
i

0.05

460

e
2
* %ﬂ*
* « **;@ R
< > ¢
> {1"40
14
Lt -* h L] % Grade1
*% 4 Grade2
& ‘i *  Grade 3
* * ¢ Tansition 1
W Transition 2

100
420 g0 &3
T g, (/min)

Steady grades (a relatively

simple task)

e Transitions (difficult)
e Whole processes (diffi

cult)

Model Mode RMSE RE (%)
S <1791 2586
S, 7.44 22.61 Ep—
Proposed method S, 454 3247 RMSE=[>(y,-v) /k
s, 22.05 6.35 -
S, 64 43,
S 18.42 40.75
S, 7.58 22.01
WLSSVR S, 5.55 39.50
5. =3 p(s. |x.)LsSVR, | S 21.90 6.29
& Z (5 x) "] s, 18.17 75.81
s 20.18 41.11
S, 8.88 26.85
WPLS S, 4.34 31.09
Y= ip(sg [x, )PLS, S; 23.55 6.79
S, 21.21 78.18

Copyright (C) 2013 CPSE Lab.
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Sequential-Reactor-Multi-Grade
(SRMG) Processes

- 63

400

350

300

250

200 - —e— Lab assay
— IJ-LSSVR2

MI

150 -

100

50+

ik e | )

A

I

0 20 40 60 80 100 120 140 160
Sample Number

0

Online prediction of M1 with proposed soft sensor method

Copyright (C) 2013 CPSE Lab.

I Reactorsiin |

2, asequence |
ﬂl 3emld |
|

|
|
|
l__.l__4 |
|
|
|

Reactor Reactor Reactor

i=1N

Data set of 1st reactor S, :{Xl, Y1} [ Lo,
= X, = <[ R K. €R%
i=1,

A simplified flowchart of a sequential process with L operating
reactors and the related modeling data set of the Ith reactor

Copyright (C) 2013 CPSE Lab.

Difficulties in Soft Sensor for SRMG

64

B Comparison of Relative Prediction Errors -s2
1 Distribution of MI
Z 6ol . s
€ 88.4 % of samples with RE < 40 % —
3 40
20}
0
‘ ‘ 08 -04 0 04
Q
£ 60r 84.5 % of samples with RE < 40 % — >
2
-3 25 2 -5 -1 -0.4 0 o4
3 60+
E 40+ 83.9 % of samples with RE < 40 % —
4
20}
0 L L L
3 2.5 2 15 1 0.4 0 04

Relative error distribution of prediction with different models

Comparison of relative prediction errors distribution of MI with 1J-
LSSVR,, WLSSVR and WPLS methods

ICopyright (C) 2013 CPSE Lab.

e Difficult to choose suitable input variables for
modeling of an SRMG process, especially for the
last reactor.

e Input variables often show co-linearity and are
combined with noise.

e Principal component analysis (PCA) can extract
latent variables (LVs) as a preprocessing step, and
then followed by a soft sensor model. However, the
important LVs may capture most of the process
variation, but may not necessarily explain quality
properties.

e Multi-grade issues

Copyright (C) 2013 CPSE Lab.
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- 65 Proposed ©8FV R for SRMG -67
U L
Proposed Soft-Sensor for SRMG JULE) - |
R (6 0V (i LSSVR model (or_1s| L Prediction
S, - {X,Y,) reactor (for prediction) | Vi
T y Test sample X,
1st reactor / Test sample X,/ s
! ' P Lt LSSVR model for 1st @
v reactor (for transform) ! - === !
# b Y oaaaa |
Input and output LSSVR model for 1st g Prediction | Input and output Ly f;niea:y:mf A ﬁggd";;:;:”p:, P
. i 1 data of 2nd reactor ' 4 o ____h =
data of 1st reactor reactor (for prediction) ] g, 3 =) VoclmxTersy N
S, ={X. Y.}
Ith reactor ! LSSVR model for 1st
:@: reactor (for wansform) |+ ‘
= FLOO-CV-based |
H{E. eR
Input and =< -
- amasme [ SR P e
Sy =X, Yya) (for transform) ;| formed by /A\}”l”ﬂ
\ \// JRU ne'”:h L"\ EL?SVI[I?\ mcdfl l—l—r Prediction
e, /e
Reactor lata of reactor v3"(‘/_’T o
Notation: [ Model training process and obtained models | [Online prediction process and prediction Data
Copyright (C) 2013 CPSE Lab. Copyright (C) 2013 CPSE Lab.
Industrial SRMG E 1
30 ; ; ;
/ ' 5 20| NI PCA-LSSVR | Traditional
2nd reactor 8 20r b
5= X%, . [FLOO-CV-based E methods
HFLo0-Cvh 2 10/ 1
~Z~~vI Optimization f\ »PCA-LSSVR
LSSVR model for 1st T X\ @ 0 — J
yl‘ ____:::::::\\\:::: ________ '3 '25 '2 '15 '1 '05 0 05 l 15 >LSSVR
reactor (for transform) | Y 7 g | . >PLS
o : // f deagd hz //l____'____]: 20 ‘ ‘ Rglatlve err‘or
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Industrial SRMG Example
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Liu, Y. and Chen, J. (2013) “Development of Soft-Sensors for Online Quality Prediction of Sequential-Reactor-Multi-Grade
Industrial Processes” Chem. Eng. Sci. (Revised).
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Model with Confidence Intervals

Superheated steam
'—4>

Burner

The cogeneration plant produces high temperature, pressurized steam for power
generation, and exhaust (low pressure steam) is later used for downstream
processes.

70

Copyright (C) 2013 CPSE Lab.

Copyright (C) 2013 CPSE Lab.
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Two Operation Modes
e The plant is operated at the high load from 8 in the
morning till 8 in the evening; the other time it is
operated at the low load.
Selective Adaptive GPR Conventional GPR
Copyright (C) 2013 CPSE Lab. 71
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Enlarged part of the sample (200 to 300)
Selective Adaptive GPR __Conventional GPR
J a.\/._l.i,.-.l,lr\; ¥
' ) B B - - b 72
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Ej Operating modes (from low and high .+
loads)

Nature of Process Data

-75
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Chan, L.L.T., Liu, Y. and Chen, J. (2013) “Nonlinear System Identification with Selective Recursive
Gaussian Process Models ” Ind. Eng. Chem. Res. (Revised).

Copyright (C) 2013 CPSE Lab. &

e High dimensional
— Many variables measured at many times
e Non-causal in nature
— No cause and effect information among individual variables
e Non-full rank
— Process really varies in much lower dimensional space
e Missing data
— 10 — 30 % is common (with some columns/rows missing 90%)
e Low signal to noise ratio
— Little information in any one variable
e Outliner
e Non-Gaussian
e Multi-Rate

Copyright (C) 2013 CPSE Lab.
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Conclusions

e Data-driven soft sensors is available
» Widely accepted in industries
» Crucial for inferential control
e Reliability and adaptation
e Just-in-time learning is alternative and promising
e Incorporating process characteristics is
important
» Multi-grade
» Sequential-reactor-multi-grade
e Remaining problems

(Copyright (C) 2013 CPSE Lab. 74
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