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What is a Soft Sensor?
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Measurement Problems

 Difficult to provide reliable, fast, on-line 
measurements to control quality

 The quality measure may only be 
available as a laboratory analysis or very 
infrequently on-line
» Lead to excessive off-specification of products

 Reliability of on-line instruments
» Drafting, fouling, sample system failure etc.

 Automatic control and optimization 
schemes cannot be implemented.
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Measurement Problems

 Productivity is quantified by specification upon which 
the product is sold, eg. purity, physical or chemical 
properties
» Primary variables: difficult to measure on-line

 The other output (eg. temperature, flow and pressure)
» Secondary variables: easily measured on-line
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Hardware Sensor Problems

27%

21%
15%

13%

10%

8%

2% 4% Time-consuming maintenance
Need for calibration
Aged deterioration
Insufficient accuracy
Long dead-time, Slow dynamics
Large noise
Low reproducibility
Others

Questionnaire to 26 companies (JSPS PSE 143 committee, 2003)
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Solutions 1: Manual Control

 Common approach to effecting control on process is 
to control it manually

 Return of information for control purpose from 
laboratory is slow and irregular

 Its success depends on the operator’s training and 
experience
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- 8Solutions 2: Parallel Cascade Control

 The slow loop dictated by the delay of a measurement device
 Assumption: If the secondary variable is kept at some value, then the 

primary variable also be kept at some level!
» Often employed in the product composition control of distillation columns
» Two control loops:

– Fast secondary loop: a tray temperature
– Slow primary loop: product composition

 Slow loop is used to correct the set-point of the secondary loop
 Drawbacks:

» Disturbances affecting the secondary variable may not affect the primary 
variable

» The relationship between the primary variable and the secondary variable 
is non-linear, and can change depending on the operating conditions
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 Huge data
 Little information or knowledge

Motivation: Rich Data

Klatt and Marquardt. Computers and Chemical Engineering, 2009, 33: 536-550.
9
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- 10Solutions 3: Inferential Measurement

 Inferential measurement allows process quality, or a difficult to 
measure process variables, to be inferred from other easily made
plant measurements such as pressure, flow or temperature.

 Soft(ware) sensor: Model which estimates immeasurable process 
states based on easy to measure input and output variables
» Software sensor, virtual soft sensor, smart sensor, virtual 

analyzer, inferential control
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Motivation: What Can a Soft Sensor Do?

 Using a good soft sensor, we can do many 
things in PSE:
» Online Quality Prediction
» Process Fault Detection
» Process Monitoring
» Sensor Fault Detection
» Inferential Control
» …
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 First principle models
» Based on balance and phenomenological equations
» Process knowledge required
» Comparatively expensive

 Data driven models
» Identified using process data
» Comparatively inexpensive
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First Principle  Models Data Driven (Empirical) Models

Method Fundamental Principles Experiments

Advantages Excellent relationships 
between parameters in 
physical systems and the 
transient behavior of the 
systems 

Good for process design since 
it is easy to use 
(Easy, less effort)

Disadvantages  Complex. ex. distillation 
column, 10 compounds, 50 
trays 500 diff. Eqs
 Large engineering effort

Less accuracy; do not provide 
enough information to satisfy all 
process  design and analysis 
requirement

First Principle Models vs. Data Driven Models
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 Multivariable 
Statistical 
Regression

 Artificial 
Neural 
Networks

 Fuzzy 
Inference 
System

Current Popular Methods

Kadlec P, et al. Comput. Chem. Eng., 2009, 33(4): 795-814.
15
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- 17Methods with Applications

(Kano and Nakagawa, Comput. Chem. Eng., 2008)

0

10

20

30

40

Year

PLS
ANN
SSID
SVM/SVR

ANN is dominant in the literature while PLS is popular in industry.

17
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- 18Methods with Applications

(Kano and Ogawa, J. Process Control, 2010)
18
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Each object is one
point in the X-space
and one point in the
Y-space.

The data matrices X
and Y, thus they are
connected swarms 
of points in these 
two spaces

PLS : A Geometric Interpretation
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PLS : A Geometric Interpretation

Calculate the average 
of each variable. The
vectors of variable
averages are points in 
the X and Y-spaces.

Subtracting averages 
from the two data 
matrices, corresponds 
to moving their 
origins to the centre 
of their respective 
data swarms.
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PLS : A Geometric Interpretation

 The first PLS 
component is a line in 
X-space and a line in 
Y-space, through the 
average points, such 
that:
» the lines well 

approximate the data 
(maximize variance 
explained), and

» the projections (t1 and 
u1) are well correlated 
(maximize correlation)
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PLS : A Geometric Interpretation

The projected
coordinates in the two
spaces (u1 and t1 in Y and 
X) are correlated in the 
inner relation
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- 23PLS : A Geometric Interpretation

The 2nd PLS lines in 
the X and Y-spaces 
pass through the 
average points.

These lines improve 
the approximation
and the correlation as 
much as possible.
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PLS : A Geometric Interpretation

The second 
projection
coordinates (u2 and 
t2) correlate, but 
usually less
well than the first.
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 The PLS components 
together form planes in 
the X and Y-space.
» Scores: t1, t2 and u1, 

u2 location on planes
» Loadings: P and Q

orientation of planes
» DModX – distance of 

observation from 
plane in the X-space

» DModY – distance of 
observation from 
plane in the Y-space
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- 26PLS is Simultaneous Dimension 
Reduction and Regression

max Var(scores) Corr2(response,scores)

Dimension Reduction
(PCA)

Regression
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- 27Using PLS Model

 Note: if you use the regression form of PLS (Y=XB), then
» cannot check data for consistency
» cannot handle missing data

 Solution:
» Use latent variable (LV) form of PLS model: calculate t’s from 

xnew and then get predictions from the t’s

1. Is new data vector, xnew, consistent with past operation?
» calculate the t-scores, SPE, and T2 values coming from xnew
» if SPE and T2 are below their limits, then make prediction
» if not, then:

– flag bad values in xnew as missing and retry the PLS model
– or, discontinue soft sensor until process problems are corrected
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Using PLS model

2. Handling missing data
» Must use the LV form of model to handle missing data 

in xnew
» Calculate the new t’s with missing data algorithm: tnew

» Do not use the regression form of the PLS model:
1 1 2 2pred new newy t c t c  

T
pred newy  x b
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Continuous Processes

Data structures

Batch Processes

Data structures

Z X Y

Initial Conditions Variable Trajectories

End Properties

variables

ba
tc

he
s

Y
X1

X3

X2

Hybrid 
Processes
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- 30Image-based Soft Sensor for Monitoring and 
Feedback Control of Snack Food Quality

C
Lab Analysis
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PCA Score Plot Histograms

Non-seasoned Low-seasoned High-seasoned
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Distribution of Pixels

Superposition of the 
score plots from 3 

sample images on top 
of the mask

Non-seasoned

Low-seasoned

High-seasoned

Distribution of pixels Cumulative distribution of pixels
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- 33Model to Predict Seasoning 
Concentration

Model for Seasoning Level 

X
Seasoning

Measurements
Cumulative
Histogram

Y

Feature
Extraction

Color
Images

PLS
Regression
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Example : Distillation Column

 Predicting a lab-measured property: XD (distillate 
composition)

 Data used: 45 tags around the unit, and its ancillary 
equipment:
» flows, temperatures, pressure
» calculated variables from a previous model:

– log(XD) = function of process measurements
– some of the terms in the above equation are non-linear, so 

add these into the model as new variables

3 2
84 84

12

1log( ) log( ) ( )Dx T T
P

     
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- 35Example: Sulphur Recovery Unit

H2S and SO2 Analyzer

Copyright (C) 2013 CPSE Lab.

- 36

Example: Extruder

 Melt index of polymer is observed to be nonlinearly related to 
variables monitored in the extruder.
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Caution 1: Collinear Variables

 Correlation versus Causation
 Modeling with collinear variables

Example:
Output: y Inputs: x1, x2, x3, x4, x5

“True” cause and effect relationship (unknown): y = 1.0x2 + e
Data: the 5 x-variables are collinear (in practice often nearly so)
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Example: Collinear Variables

1. Least squares (linear regression)
XTX matrix : no solution if singular, OR poor estimates if nearly 
singular

2. Step-wise linear regression

3. PLS

4. Neural networks

Assuming a linear relationship, we fit the model of the form:

0 1 1 2 2 3 3 4 4 5 5y b b x b x b x b x b x       

11.0y x   1, 2,3, 4,or 5k 

1 2 3 4 50.2 0.2 0.2 0.2 0.2y x x x x x      

1 2 3 4 50.63 0.36 0.09 0.22 0.30y x x x x x      
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- 39Can These Models be Used ?

 They are all wrong from a cause and effect point of 
view! They just model the correlation structure in the 
historical data set - Correlation models only

 But each model provides equally good predictions of 
y as long as the process remains the same 
(correlation structure stays constant).

 Models cannot be used to change the process in a 
way that would lead to a different correlation 
structure among the variables (e.g. optimization).
» Since predictions are not valid outside the correlation 

structure in the data used to build the model.

Copyright (C) 2013 CPSE Lab.

- 40Can These Models be Used ?

 The problem is not the model but the data –
collinearity is a result of the mode of operation. 
Real process data are often close to being collinear.

 To imply cause and effect for each variable, one 
needs designed experiments to generate the data.
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Caution 2: Feedback Control

“True” cause and effect model:

Regression model from data:

Models the effect of the feedback control (i.e. the natural 
correlation structure in the data) not of the causal effect in the 
process!
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- 42Effect of Feedback Control: Coefficient Plots

The true cause and effect model The correlation model

Closed-loop (feedback 
control) data

Open loop DOE data
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To Get Causal Models: Need DOE

 Historical data is good for
» Building model for monitoring
» Soft sensors
» Exploratory analysis of process operating problems

– eg. Score and loading plots, contribution plots, to drill-down 
to variables related to the problem.

 For causal model, eg. for control or optimization
» Need independent effects of all manipulated variables
» Generally need designed experiments in these variables
» Use statistical design (eg. factorials)
» Do not change one factor at a time
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- 44Example: Polymer Production Plant

 A polymerization process
» Around 50 available X-variables
» Melt index is the property of interest (Y)
» Company fit large amount of data with neural network regression 

model
» Good fit to the data but very poor predictions with new data

 Four grades (four Y set-points); 5, 10, 15, 20

 Operating data collected for each grade
» Appears to be simple problem:

– fit model to data, then
– use model for prediction

 But what data should be used? This is the key issue.
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- 45Polymer Production Plant

Monomer

Catalyst

Comonomer

ReactorReactor
SeparatorSeparator ExtruderExtruder

BlenderBlender

Products
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- 46Grade Changeover Operation

Grade A

Grade B
Pattern A

Pattern B

Grade A Grade B

Instantaneous
grade

Instantaneous
grade

Grade A Grade B

1. Not time but grade 1. Not time but grade 
optimal operationoptimal operation
2. Runaway reaction2. Runaway reaction

H2
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Y vs X Data for 4 Grades
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Regression Fit of All Data
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- 49Regression Fit of Data from One Grade
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4. Recent results
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- 51Problems of Current Soft Sensors

(Kano and Ogawa, J. Process Control, 2010)

Not 
Always 
Good?
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- 52Reliability of a Soft Sensor

 A fixed soft sensor is not enough (Reliability)
» Changes in process characteristics and 

operating conditions
» Data are insufficient to build a global and good soft sensor 

for complex processes
» The most serious, practical problem is how to keep the 

high estimation performance
 Model Maintenance is important but difficult
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- 53Soft Sensor Adaptation

 Adaptation of a soft sensor
» Reconstruction of a global fixed soft sensor is difficult in 

practice
 Recursive approaches

» Update a model recursively
– Exponentially Weighted PLS (Dayal and MacGregor, 1997)
– Recursive PLS (Qin, 1998)
– Recursive LSSVR (Liu et al., 2009)
– Extensions and Applications 

» Unable to cope with abrupt changes
» Insufficient for multi-mode processes
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- 54Improved Methods: PCA as an Example

Nonlinear: y = f(u)  is essentially nonlinear for most complex 
chemical processes.
Adaptive: to capture different complicated characteristics 

Kadlec P, et al. Comput. Chem. Eng., 2009, 33(4): 795-814.
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- 55Soft Sensor Adaptation

 Alternative: Just-in-time learning (JITL) methods
» Build a local model from neighbor samples stored in a 

database on demand (in a JIT manner)
» Similar input for similar output

 Advantages of JITL methods
» Treat changes in process characteristics
» Without model maintenance
» Local fitting ability for better prediction
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- 56Two Modeling Manners:
Global Learning vs Just-in-time Learning

Yi Liu, et al. Ind.  Eng. Chem. Res., 2012, 51(11): 4313-4327.
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1. Background and Motivation
2. Current methods: a simple review
3. Some Challenges
4. Recent results
5. Concluding remarks

Copyright (C) 2013 CPSE Lab.

- 58
Multi-Grade Polymerization Processes

 Increasing demand for 
product diversification results 
in more stringent 
specifications requirements in 
properties.

 Production of multi-grade 
products requires frequently 
changing operating conditions 
of reactors. 

 Polymerization is a highly 
nonlinear process, which 
usually produces products, 
e.g., melt index (MI), with 
multiple quality grades. 
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 Steady grades (a relatively 
simple task)

 Transitions (difficult)
 Whole processes (difficult)

Copyright (C) 2013 CPSE Lab.

- 59

Probabilistic Modeling Strategy

Steady grade: LSSVR model

Transitions: JLSSVR model

The probability of the new sample xq in each operation mode
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Liu, Y. and Chen, J. (2013) “Dynamic Process Fault Monitoring Based on Neural Network and PCA, Integrated Soft Sensor 
Using Just-in-time Support Vector Regression and Probabilistic Analysis for Quality Prediction of Multi-Grade Processes”
J. Process Contr. (In Press). 
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- 60Prediction Performance Comparisons for Steady and 
Transitional Modes Using Different Soft Sensors
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- 61Online Prediction of MI 

Online prediction of MI with proposed soft sensor method
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- 62Comparison of Relative Prediction Errors 
Distribution of MI 

Comparison of relative prediction errors distribution of MI with IJ-
LSSVR2, WLSSVR and WPLS methods
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83.9 % of samples with RE < 40 %

84.5 % of samples with RE < 40 %

88.4 % of samples with RE < 40 %
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- 63Sequential-Reactor-Multi-Grade 
(SRMG) Processes
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A simplified flowchart of a sequential process with L operating 
reactors and the related modeling data set of the lth reactor
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Difficulties in Soft Sensor for SRMG

 Difficult to choose suitable input variables for 
modeling of an SRMG process, especially for the 
last reactor.

 Input variables often show co-linearity and are 
combined with noise.

 Principal component analysis (PCA) can extract 
latent variables (LVs) as a preprocessing step, and 
then followed by a soft sensor model. However, the 
important LVs may capture most of the process 
variation, but may not necessarily explain quality 
properties.

 Multi-grade issues
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- 65Proposed Soft-Sensor for SRMG

LSSVR model for 1st 
reactor (for prediction) PredictionInput and output 

data of 1st reactor

1st reactor

 1 1 1,S X Y

Test sample 1,tx

1,ˆ ty

Reactor 1

1Y 1
1, 1, ,

m
i i N

R


x

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- 66Proposed Soft-Sensor for SRMG

The input variables in the previous 
reactors can be substituted for “virtual”
variables obtained from the transform 
models
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- 67Proposed LSSVR for SRMG

Y2 and 
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,ˆl ty

 ,l l lS X Y

 1 1 1,l l l  S X Y
lZ

2
T 1T

2, 1, 2,, m
i i iy R    z x

Transform g1

lf

2f

Test sample ,l tx

Transform g1 ~ gl-1

2,tz

,l tz

Notation:

. . .. . . . . . . . . . . .. . .
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Traditional 
methods
PCA-LSSVR
LSSVR
PLS 
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JS-LSSVR
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Proposed 
methods
JS-LSSVR
SLSSVR
JLSSVR 

69

Liu, Y. and Chen, J. (2013) “Development of Soft-Sensors for Online Quality Prediction of Sequential-Reactor-Multi-Grade 
Industrial Processes” Chem. Eng. Sci. (Revised). 

Industrial SRMG Example
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70

Burner

Feed water Superheated  steam

Air

Fuel

175 180 185 190 195 200 205 210
25

30

35
250

260

270

280

290

300

310

320

The cogeneration plant produces high temperature, pressurized steam for power 
generation, and exhaust (low pressure steam) is later used for downstream 
processes. 

Model with Confidence Intervals
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Two Operation Modes

 The plant is operated at the high load from 8 in the 
morning till 8 in the evening; the other time it is 
operated at the low load. 

71

Selective Adaptive GPR Conventional  GPR
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Enlarged part of the sample (200 to 300)

72

Selective Adaptive GPR Conventional  GPR
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- 73Operating modes (from low and high 
loads) 

73

Chan, L.L.T., Liu, Y. and Chen, J. (2013) “Nonlinear System Identification with Selective Recursive 
Gaussian Process Models ” Ind. Eng. Chem. Res. (Revised).
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- 74Conclusions

74

 Data-driven soft sensors is available
» Widely accepted in industries
» Crucial for inferential control

 Reliability and adaptation
 Just-in-time learning is alternative and promising
 Incorporating process characteristics is 

important
» Multi-grade
» Sequential-reactor-multi-grade

 Remaining problems

Copyright (C) 2013 CPSE Lab.
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Nature of Process Data

 High dimensional 
– Many variables measured at many times

 Non-causal in nature
– No cause and effect information among individual variables 

 Non-full rank
– Process really varies in much lower dimensional space

 Missing data
– 10 – 30 % is common (with some columns/rows missing 90%)

 Low signal to noise ratio
– Little information in any one variable

 Outliner
 Non-Gaussian
 Multi-Rate
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