

Measurement Problems

- Difficult to provide reliable, fast, on-line measurements to control quality
- The quality measure may only be available as a laboratory analysis or very infrequently on-line
 - » Lead to excessive off-specification of products
- Reliability of on-line instruments
 » Drafting, fouling, sample system failure etc.
- Automatic control and optimization schemes cannot be implemented.

- 5

Measurement Problems

- Productivity is quantified by specification upon which the product is sold, eg. purity, physical or chemical properties
 - » Primary variables: difficult to measure on-line

- The other output (eg. temperature, flow and pressure)
 - » Secondary variables: easily measured on-line

Copyright (C) 2013 CPSE Lab

Solutions 1: Manual Control

Common approach to effecting control on process is to control it manually

- Return of information for control purpose from laboratory is slow and irregular
- Its success depends on the operator's training and experience

- Inferential measurement allows process quality, or a difficult to measure process variables, to be inferred from other easily made plant measurements such as pressure, flow or temperature.
- Soft(ware) sensor: Model which estimates immeasurable process states based on easy to measure input and output variables
 - » Software sensor, virtual soft sensor, smart sensor, virtual analyzer, inferential control

Motivation: What Can a Soft Sensor Do?

- Using a good soft sensor, we can do many things in PSE:
 - » Online Quality Prediction
 - » Process Fault Detection
 - » Process Monitoring
 - » Sensor Fault Detection
 - » Inferential Control
 - » . . .

Copyright (C) 2013 CPSE Lab.

- First principle models
 - » Based on balance and phenomenological equations
 - » Process knowledge required
 - » Comparatively expensive
- Data driven models
 - » Identified using process data
 - » Comparatively inexpensive

11

	First Principle Models	Data Driven (Empirical) Models
Method	Fundamental Principles	Experiments
Advantages	Excellent relationships between parameters in physical systems and the transient behavior of the systems	Good for process design since it is easy to use (Easy, less effort)
Disadvantages	 Complex. ex. distillation column, 10 compounds, 50 trays 500 diff. Eqs Large engineering effort 	Less accuracy; do not provide enough information to satisfy all process design and analysis requirement

5. Concluding remarks

14

Methods with Applications

process distillation reaction polymerization others total	Phys 20 5 0 0	MRA 256 32 4	PLS 41 43 8	O.L. 6 0	ANN 0	JIT 5	Gray 3	total 331
distillation reaction polymerization others total	20 5 0 0	256 32 4	41 43 8	$\begin{array}{c} 6 \\ 0 \end{array}$	0	5	3	331
reaction polymerization others total	5 0 0	32 4	43 8	0	0	-		
polymerization others	0 0	4	8		U	5	1	86
others	0	-	0	0	3	0	5	20
total		1	1	0	0	0	0	2
total	25	293	93	6	3	10	9	439
Phys: physica MRA: multip PLS: partial O.L.: other l ANN: artificia JIT: just-in- Gray: gray-b physica	al model le regressi least squ inear regr al neural time mod ox model al model a	ion analy ares regr ression network del or hybrid and stati	vsis ression d model stical m	l betwee nodel	n			

Copyright (C) 2013 CPSE Lab

- 18

PLS : A Geometric Interpretation

Each object is one point in the X-space and one point in the Y-space.

The data matrices **X** and **Y**, thus they are connected swarms of points in these two spaces

Copyright (C) 2013 CPSE Lab.

- 20 **PLS : A Geometric Interpretation** Calculate the average of each variable. The X- Plane Y- Plane vectors of variable averages are points in means the X and Y-spaces. Subtracting averages from the two data matrices, corresponds to moving their

origins to the centre of their respective data swarms.

Copyright (C) 2013 CPSE Lab.

- 23

- 24

Page 6 of 19

- 27

Page 8 of 19

opyright (C) 2013 CPSE Lab

- Predicting a lab-measured property: X_D (distillate composition)
- Data used: 45 tags around the unit, and its ancillary equipment:
 - » flows, temperatures, pressure
 - » calculated variables from a previous model:
 - $-\log(X_D)$ = function of process measurements
 - some of the terms in the above equation are non-linear, so add these into the model as new variables

$$\log(x_D) = \dots + \log(T_{84}) - \frac{1}{P_{12}} + (T_{84})^{3/2} + \dots$$

Example: Sulphur Recovery Unit - 35 $2H_2S + SO_2 \longrightarrow 3S + 2H_2O$ $H_2S + 1.5O_2 \rightarrow H_2O + SO_2$ acid gas flow H₂S and SO₂ Analyzer air inlet flor [H2S] - 2 [SO2] natural gas Dynamic Soft Sensor temperature difference in first catalytic reactor Model temperature difference in second catalytic reactor

- 36 **Example: Extruder** Melt index of polymer is observed to be nonlinearly related to variables monitored in the extruder. Gas and **Online Analyzer Extruder Schematic** Excess Gas 30 mins bias Polymer Pellet updating Soft Sensor Extruder In-Line Extrude Motor PI 02 SI TI PI 01 01 01 (PI 04 PI 05 01 Copyright (C) 2013 CPSE Lab

Copyright (C) 2013 CPSE Lab

Page 9 of 19

- 37

- 38

Caution 1: Collinear Variables

- Correlation versus Causation
- Modeling with collinear variables

Example:

Output: y Inputs: x_1 , x_2 , x_3 , x_4 , x_5 "True" cause and effect relationship (unknown): $y = 1.0x_2 + e$ Data: the 5 x-variables are collinear (in practice often nearly so)

у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
-1.092	-1	-1	-1	-1	-1
2.074	2	2	2	2	2
-0.581	-0.5	-0.5	-0.5	-0.5	-0.5
0.888	0.9	0.9	0.9	0.9	0.9

Copyright (C) 2013 CPSE Lab

Example: Collinear Variables

Assuming a linear relationship, we fit the model of the form:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 + \varepsilon$$

- Least squares (linear regression) X^TX matrix : no solution if singular, OR poor estimates if nearly singular
- 2. Step-wise linear regression

$$y = 1.0x_1 + \varepsilon$$
 $k = 1, 2, 3, 4, \text{ or } 5$

3. PLS

$$y = 0.2x_1 + 0.2x_2 + 0.2x_3 + 0.2x_4 + 0.2x_5 + \varepsilon$$

4. Neural networks

$$y = 0.63x_1 + 0.36x_2 + 0.09x_3 + 0.22x_4 + 0.30x_5 + \varepsilon$$

Copyright (C) 2013 CPSE Lab

Can These Models be Used ?

- 39

- 40

- They are all wrong from a cause and effect point of view! They just model the correlation structure in the historical data set - Correlation models only
- But each model provides equally good predictions of y as long as the process remains the same (correlation structure stays constant).
- Models cannot be used to change the process in a way that would lead to a different correlation structure among the variables (e.g. optimization).
 - » Since predictions are not valid outside the correlation structure in the data used to build the model.

Copyright (C) 2013 CPSE Lab.

Can These Models be Used ?

- The problem is not the model but the data collinearity is a result of the mode of operation. Real process data are often close to being collinear.
- To imply cause and effect for each variable, one needs designed experiments to generate the data.

To Get Causal Models: Need DOE

- 43

- Historical data is good for
 - » Building model for monitoring
 - » Soft sensors
 - Exploratory analysis of process operating problems
 eg. Score and loading plots, contribution plots, to drill-down to variables related to the problem.
- For causal model, eg. for control or optimization
 - » Need independent effects of all manipulated variables
 - » Generally need designed experiments in these variables
 - » Use statistical design (eg. factorials)
 - » Do not change one factor at a time

Copyright (C) 2013 CPSE Lab.

- Around 50 available X-variables
- » Melt index is the property of interest (Y)
- » Company fit large amount of data with neural network regression model
- Good fit to the data but very poor predictions with new data
- Four grades (four Y set-points); 5, 10, 15, 20
- Operating data collected for each grade
 - Appears to be simple problem:
 - fit model to data, then
 - use model for prediction
- But what data should be used? This is the key issue.

Y vs X Data for 4 Grades

- 47

Page 12 of 19

5. Concluding remarks

Problems of Current Soft Sensors

- 51

- 52

oblems of Current Soft Ser

	K	<
	1 4 07	
burden of modeling itself	14 %	Not
burden of data preprocessing	7%	
inadequate accuracy since installation	7 %	Alway
inadequate accuracy due to changes	7 %	Good
in operating conditions		
difficulty in evaluating reliability	7%	
unjustifiable cost performance	7~%	

(Kano and Ogawa, J. Process Control, 2010)

Copyright (C) 2013 CPSE Lab.

<u>A fixed soft sensor is not enough (Reliability)</u>

- » Changes in process characteristics and operating conditions
- » Data are insufficient to build a global and good soft sensor for complex processes
- » The most serious, practical problem is how to keep the high estimation performance
- Model Maintenance is important but difficult

- 53

Soft Sensor Adaptation

Adaptation of a soft sensor

» Reconstruction of a global fixed soft sensor is difficult in practice

• <u>Recursive approaches</u>

- » Update a model recursively
 - Exponentially Weighted PLS (Dayal and MacGregor, 1997)
 - Recursive PLS (Qin, 1998)
 - Recursive LSSVR (Liu et al., 2009)
 - Extensions and Applications
- » Unable to cope with abrupt changes
- » Insufficient for multi-mode processes

Copyright (C) 2013 CPSE Lab

Kadlec P, et al. Comput. Chem. Eng., 2009, 33(4): 795-814.

Copyright (C) 2013 CPSE Lab

Soft Sensor Adaptation

<u>Alternative: Just-in-time learning (JITL) methods</u>

- » Build a local model from neighbor samples stored in a database on demand (in a JIT manner)
- » Similar input for similar output

Advantages of JITL methods

- » Treat changes in process characteristics
- » Without model maintenance
- » Local fitting ability for better prediction

Copyright (C) 2013 CPSE Lab.

- 57

Outline

- **Background and Motivation** 1.
- **Current methods: a simple review** 2.
- 3. **Some Challenges**
- **Recent results** 4.
- 5. **Concluding remarks**

Copyright (C) 2013 CPSE Lab

Multi-Grade Polymerization Processes

- Increasing demand for product diversification results in more stringent specifications requirements in properties.
- Production of multi-grade products requires frequently changing operating conditions of reactors.
- Polymerization is a highly nonlinear process, which usually produces products, e.g., melt index (MI), with multiple quality grades.

- Transitions (difficult)
- Whole processes (difficult)

Probabilistic Modeling Strategy

- 59

The probability of the new sample \mathbf{x}_{a} in each operation mode... $P\left(g\left|\mathbf{x}_{q}\right.\right) = \frac{n_{g}}{D_{q,\mathbf{x}_{g}}^{2}\sum_{i=1}^{G}\left(n_{i}/D_{i,\mathbf{x}_{g}}^{2}\right)}$ $g = 1, \cdots, G$ New sample \mathbf{X}_{a} $P(g|\mathbf{x}_q) > \delta, g = 1, \dots, G$ Steady grade: LSSVR model $\max \left\{ P\left(g \left| \mathbf{x}_{q} \right) \right\} \leq \delta, g = 1, \cdots, G \text{ Transitions: JLSSVR model} \right\}$ Liu, Y. and Chen, J. (2013) "Dynamic Process Fault Monitoring Based on Neural Network and PCA, Integrated Soft Sensor Using Just-in-time Support Vector Regression and Probabilistic Analysis for Quality Prediction of Multi-Grade Processes" J. Process Contr. (In Press).

Copyright (C) 2013 CPSE Lab.

Prediction Performance Comparisons for Steady and ⁻⁶⁰ **Transitional Modes Using Different Soft Sensors**

Model	Mode	RMSE	RE (%)	-
	S	<u> </u>	<u>25.86</u>	-
	\mathbf{S}_1	<u>7.44</u>	22.61	$\frac{k}{2}$
Proposed method	\mathbf{S}_2	4.54	32.47	$RMSE = \sqrt{\sum_{i=1}^{n} (y_i - y_i)} / k$
	\mathbf{S}_3	22.05	6.35	V 1=1 /
	\mathbf{S}_t	15.64	43.34	$(2)^2$
	S	18.42	40.75	$\mathbf{RE} = \left \sum_{i=1}^{k} \left(\frac{y_i - y_i}{y_i} \right) \right / k$
	\mathbf{S}_1	7.58	<u>22.01</u>	$\int \frac{dz}{dz} \left(\begin{array}{c} y_i \end{array} \right) / f$
WLSSVR	\mathbf{S}_2	5.55	39.50	
$\hat{\mathbf{y}}_{a} = \sum_{i=1}^{G} P(\mathbf{S}_{a} \mathbf{x}_{i}) \text{LSSVR}_{c}$	\mathbf{S}_3	<u>21.90</u>	<u>6.29</u>	
$s_q \qquad \sum_{g=1} (g \mid q) \qquad s_g$	\mathbf{S}_t	18.17	75.81	_
	S	20.18	41.11	
	\mathbf{S}_1	8.88	26.85	
WPLS	\mathbf{S}_2	<u>4.34</u>	<u>31.09</u>	
$\hat{y}_{q} = \sum_{k=1}^{G} P(\mathbf{S}_{k} \mathbf{x}_{q}) PLS_{\mathbf{S}_{k}}$	\mathbf{S}_3	23.55	6.79	
$\frac{1}{g=1}$	\mathbf{S}_{t}	21.21	78.18	

A simplified flowchart of a sequential process with *L* operating reactors and the related modeling data set of the *l*th reactor

Copyright (C) 2013 CPSE Lab.

- Difficult to choose suitable input variables for modeling of an SRMG process, especially for the last reactor.
- Input variables often show co-linearity and are combined with noise.
- Principal component analysis (PCA) can extract latent variables (LVs) as a preprocessing step, and then followed by a soft sensor model. However, the important LVs may capture most of the process variation, but may not necessarily explain quality properties.
- Multi-grade issues

Two Operation Modes

• The plant is operated at the high load from 8 in the morning till 8 in the evening; the other time it is operated at the low load.

Nature of Process Data

- 75

- High dimensional
 - Many variables measured at many times
- Non-causal in nature
 - No cause and effect information among individual variables
- Non-full rank
 - Process really varies in much lower dimensional space
- Missing data
 - 10 30 % is common (with some columns/rows missing 90%)
- Low signal to noise ratio
 - Little information in any one variable
- Outliner
- Non-Gaussian
- Multi-Rate

Copyright (C) 2013 CPSE Lab.