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Control in a Nonstationary World

The stable stationary state is an unnatural one.

“If left to themselves machines do not stay adjusted, components wear 
out and managers and operators miscommunication and change 
jobs””

Box G. and Luceño A. 

Left to itself the entropy of any 
system can never decrease.

The second law of  thermodynamics 

Process Monitoring 

Process Adjusting 

(C) 2008-2013 CPSE Lab. J. Chen

- 4Modern Control Room

 Today, hardware and software 
advances has made it easy to 
add alarms at minimal cost 

 Large increase in the quantity of 
alarms

 Reducing the quality and 
efficiency of alarms
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Operators Receive too Many Alarms

Industry standard and typical actual values of alarms

3Engineering Equipment and Materials User Associations
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 Chernobyl, Ukraine, 1986 (more than 4000 direct and 
indirect deaths)

 Piper Alpha Oil Rig, North Sea, 1988 (167 deaths)
 Phillips 66 Complex, Texas, 1989 (23 deaths)
 BP Refinery, Texas City, 2005 (15 deaths)
 Ammonium nitrate explosions, Monclove, Mexico (2007)
 Cement failure in offshore oil rig

» Montana rig, East Timor sea (2009)
» Deepwater Horizon, Gulf of Mexico (2010)

 Fertilizer Plant Explosion, Texas (2013) (14 deaths)

The repetition of accidents tells us that we need a new 
look into control systems in the operating plant.

History of Repeated Accidents is Over and Again
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Example: Health Detection 

A doctor gathers information in stages to give a diagnosis:
Var 1: Temperature
Var 2: Blood pressure
Var 3: Pain location

… further information might be useless

Var 4: Hair color
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Let Data Talk
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ClusteringProjection



(C) 2008-2013 CPSE Lab. J. Chen

- 9Quality Improvement and Statistics

• Definitions of Quality

Quality means fitness for use

- quality of design

- quality of conformance

Quality is inversely proportional to 
variability.

Statistical process control is a collection of 
tools that when used together can result in 
process stability and variance reduction.

SPC has its origin in 
the 1920s. (Dr. 
Shewhart, Bell Lab.)
The methodology is 
widely applied after 
World War II.
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 Shot a rifle?
 Played darts?
 Shot a round of golf?
 Played basketball?

Who is the better shot?

(7)

(1)

(3)

(5)

A

B

7531 10 7 5 3 1

C
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A

MxLCL
UCL

B

M xLCL UCL

C

M xLCL UCL

Have you ever…
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Basic Principles

• A process that is operating with only chance 
causes of variation present is said to be in 
statistical control.

• A process that is operating in the presence of 
assignable causes is said to be out of control.

• The eventual goal of SPC is the elimination of 
variability in the process.

Control Charts
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Univariate Charts: USPC

LCL UCL 
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A typical control chart has control limits set at values 
such that if the process is in control, nearly all points 
will lie within the upper control limit (UCL) and the 
lower control limit (LCL).

Basic Principles

Control Charts
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Basic Principles

Control Charts
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Design of a Control Chart
Suppose we have a process that we assume the true 
process mean is  = 74 and the process standard deviation 
is  = 0.01.  Samples of size 5 are taken giving a standard 
deviation of the sample average,  average standard 
deviation  is 

• Control limits can be set at 3 standard deviations from the 
mean in both directions.

• “3-Sigma Control Limits”
UCL = 74 + 3(0.0045) = 74.0135

CL= 74
LCL =  74 - 3(0.0045) = 73.9865

0045.0
5

01.0

n
x 




Control Charts
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Design of a Control Chart

Control Charts
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Univariate Charts: USPC

 Establish a permanent information system over the 
process evolution. 
» Detect the anomalies at an early stage (special causes).

» Help to identify the causes of the anomalies.

» Eliminate the anomalies and prevent their reappearance.
(Or on the contrary, incorporate them to the process if they 
improve its performance.)

detect and take action
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USPC: Limitation

 Quality is often a multivariate property.
 Univariate control charts (ignores correlation)

UCL Simple example with
only 2 quality variables

• False negative
x False positive (false alarm)

x x

x

Problem: what if we 
have 100 variables?
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variable 1

variable 2
Marginal probability density 
function - variable 1

mean

standard deviation

A Single Random Variable with a Multi-
Normal Distribution

σ2

µ
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variable 1

variable 2

marginal probability density 
function - variable 2

mean

standard deviation

A Single Random Variable with a Multi-
Normal Distribution

σ2

µ
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Function

σ1
2 σ12

σ21 σ2
2

variable 1

variable 2
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variable 1

variable 2

Parameter correlation

A Two-Dimensional Random Variable with 
a Multi-normal Distribution

σ1
2 σ12

σ21 σ2
2

variance-covariance
matrix
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σ1
2 0

0 σ2
2

variable 1

variable 2

No parameter correlation

A Two-Dimensional Random Variable with 
a Multi-normal Distribution

variance-covariance
matrix
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Example of a multivariate data set:
A polymerization process, N=820 observations, K=160 variables.
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How the Nature of Data Has Changed

 Computers and automated measurement systems 
have lead to exponential explosion in data collected

 Large data sets (dimensions N, K, M very large)
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Driver: Process computers

eg: Petroleum process (one section)
N~100,000; K~500; M~20
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Examples: Analytical Labs (Calibration)

Driver: New instrumentation

eg: N~30; K~2000; M~5
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More Problems ... and More Data

 Traditional SPC chart monitors single variables, 
often just the quality variables, Y.

 For SPC why not use process variables X?
 Why use the X-variables ?

» Many more X variables available than Y
– Use easily available process measurements to build a soft sensor. 

Temperatures, pressures, flows, levels, etc.

» X’s are on-line (real-time), Y’s are often off-line (lab)
» X’s are more frequent, and often more precise
» Fingerprints of faults are in the X’s
» More faults may be detected with the X’s, than with Y’s
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Geometry of Principal Component Analysis

 12 observations and 2 variables
 Center and scale the variables to 

have equal basis.
 Total variances of variables are 

44.182 (i.e. 23.091+21.091).
 The percentages of the total 

variance accounted for x1 and 
x2 are 52.26% and 47.74%.

 Correlation coefficient is 0.746.

x1 x2

Obs Original Corrected Original Corrected

1 16 8 8 5

2 12 4 10 7

3 13 5 6 3

4 11 3 2 -1

5 10 2 8 5

6 9 1 -1 -4

7 8 0 4 1

8 7 -1 6 3

9 5 -3 -3 -6

10 3 -5 -1 -4

11 2 -6 -3 -6

12 0 -8 0 -3

Mean 8 0 3 0

Var 23.091 23.091 21.091 21.091

 
12
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,1 1
1

1
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Geometry of Principal Component Analysis

Obs x1 x2 x1*

1 8 5 8.747

2 4 7 5.155

3 5 3 5.445

4 3 -1 2.781

5 2 5 2.838

6 1 -4 0.29

7 0 1 0.174

8 -1 3 -0.464

9 -3 -6 -3.996

10 -5 -4 -5.619

11 -6 -6 -6.951

12 -8 -3 -8.399

Mean 0 0 0

Var 23.091 21.091 28.659

 New variable x1* for a rotation of 
10 degree

 The projection of the observations 
onto  x1 gives the coordinate of 
the observation with respect to 
x1*. *

1 1 2cos sinx x x  
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Representation Points with Respect to Different  Axes

1 1 2 2
T Tx x x e e



1 [1 0]Te

2 [0 1]Te

*
1 [cos sin ]T e

*
2 [ sin cos ]T  e

 1 2

T
x xx

* *
1 2

T
x x   x



sin

cos
sincos

The vectors      and      can be represented 
with respect to      and       as

* *
1 1 2cos sinT T T  e e e

* *
2 1 2sin cosT T T  e e e

* *
1 2 1 1 2 2( cos sin ) ( sin cos )T Tx x x x       x e e

*
11

*
22

cos sin

sin cos

xx

xx

 
 

    
        

The coordinates of x with respect to the 
new axes are linear combinations of the 
coordinates with respect to the old axes.

1e 2e
*
1e *

2e
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Variance Accounted for New Variables x1 for 

Various New Axes

 The percentage of the 
total variance accounted 
for x1 increases as the 
angle between x1* and 
x1 increases and then, 
after a certain maximum 
value, the variance 
accounted for x1* begins 
to decrease.

 There is one and only 
one new axis that results 
in a new variable 
accounting for the 
maximum variance in the 
data.

Angle with x1 Total Var. Var. of x1* %

0 44.182 23.091 52.263

10 44.182 28.659 64.866

20 44.182 33.434 75.676

30 44.182 36.841 83.387

40 44.182 38.469 87.072

43.261 44.182 38.576 87.312

50 44.182 38.122 86.282

60 44.182 35.841 81.117

70 44.182 31.902 72.195

80 44.182 26.779 60.597

90 44.182 21.091 47.772
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New Axes Making an Angle of 43.261

 The percentage of the total 
variance accounted for x1* is 
about 87.31% (38.576/44.182) 
of the total variance in the data.

 The second axis accounts for 
the maximum of the variance 
that is not accounted for x1*.

OBS x1 x2 x1* x2*

1 8 5 9.253 -1.841

2 4 7 7.71 2.356

3 5 3 5.697 -1.242

4 3 -1 1.499 -2.784

5 2 5 4.883 2.271

6 1 -4 -2.013 -3.598

7 0 1 0.685 0.728

8 -1 3 1.328 2.87

9 -3 -6 -6.297 -2.313

10 -5 -4 -6.382 0.514

11 -6 -6 -8.481 -0.257

12 -8 -3 -7.882 3.298

Mean 0 0 0 0

Var. 23.091 21.091 38.572 5.606
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Starting Point: Problem ⇒ Data Table X (N x K)

 Data set = table (matrix)
N objects and K variables

 Often many variables -
large K

 Often few observations 
(K>>N) or many of both (N 
and K large)

 Missing data
 Poor data: clusters and 

collinearity

 Objects (rows):
» Analytical samples
» Process time points
» Trials (experim. runs)
» Chemical compounds, …

 Variables (columns):
» Sensors (T, P, flow, pH, 

conc.,…)
» Chromatographic Peaks 

(HPLC, GC, 
Electrophoresis, …)

» Laboratory assays
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Example of a multivariate data set:
A polymerization process, N=820 observations, K=160 variables.
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Data Preprocessing

 Centering = subtracting column averages,
columns that vary around zero

 Scaling the variables = usually dividing columns by 
their standard deviation (i.e. scaling all variables to 
unit variance).
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Example of Scatter Plots with Two Scalings

(a) Equal importance (length of axes)

(b) unequal importance
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Illustrated Example: Slurry-Fed Ceramic Melter (SFCM)

 Nuclear waste from fuel 
reprocessing is combined 
with glass forming materials.

 The slurry is fed into a high 
temperature glass melter, 
producing a stable vitrified 
product for disposal in a long 
term repository.

 Temperatures are measured 
at 10 locations in the melter.

 Many of the variables with a 
great deal of correlation 
appear to follow a saw-tooth 
pattern. 

Ref: Wise, B. M. and Gallagher, N. B. The process chemometrics
approach to process monitoring and fault detection, J. Proc. Cont. 6(8) 329-348, 1996 

»pcademo
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Illustrated Example: Scaled Data (SFCM)

 The first thing we want to 
do is to scale data before 
the data apply to PCA. 

 If there are only 
temperature data, an 
argument can be made 
for mean centering of the 
data. Now the inclusion of 
a level measurement 
argues for autoscaling.

 Now, the data 
distributions look better.
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PCA - Geometric interpretation : Objects/Points 

 We construct a space, with 
K dimensions for the matrix 
of data, X.
This is called the “X-space”.

 Each variable has one 
coordinate axis, with the 
length determined by its 
scaling, usually unit 
variance.

 Each row or object in X is 
represented by one point in 
X-space.

 The data matrix X 
represents a swarm of 
points in this space.

(C) 2008-2013 CPSE Lab. J. Chen

- 44
PCA - Geometric Interpretation: Average

 First, we calculate the 
average of each variable.

 The vector of variable 
averages is also a point in 
X-space.

 This average is subtracted 
from the data matrix. This 
corresponds to moving the 
origin of the coordinate 
system to the middle 
(“center-of-mass”) of the 
data swarm.
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PCA - Geometric Interpretation: First Component

 The first principal 
component (PC) is a line in 
X-space that best 
approximates the data (in 
the least squares sense).

 It explains the greatest 
possible amount of 
variation.

 The line goes through the 
average point.

 The direction of the line is 
determined by the loading 
vector p1 (elements p1k ). 

 The position of each point, i, 
on the line is ti1.
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PCA - Geometric Interpretation: Second Component

 The second PC is a line in 
X-space orthogonal to the 
line of the first component.

 It also goes through the 
average point.

 This line improves the 
approximation of the data 
points as much as possible.

 It explains the next greatest 
amount of variation.
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PCA - Geometric Interpretation: PC-Plane

 The principal components 
together form a plane 
(hyper-plane) in X-space.

 Projection of points onto 
this plane provides a low 
dimensional window into 
our process.
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 Given a sample of M observations on a vector of N
variables

 Define the first principal component of the sample by 
the chosen linear transformation

 
11

1 1 1 1
1

1

N
T

m m m mN mn n
n

N

p

t x x x p

p


 
    
  

x p  

 1 2
T
m m m mNx x xx 

such that 

1
1max ( )Var t

p
and 1 1 1T p p



(C) 2008-2013 CPSE Lab. J. Chen

- 49Algebraic Derivation of p1

1 1 2 2

1 2

1 1 1

1 1
1 1

1 1 1 1
1 1

( )

 

 

T T
m m

N N

i mi mj j
i j

N N
T

n n n n
n n

Var t E

E p x x p

p s p

 

 

   
 

  
 

 





p x x p

p Sp

where ij ij mi mjs E x x     

 
1 1

1 1 1 1 1 1
,

max 1T TL


  
p

p Sp p pLagrange multiplier 

By differentiating    1 1 1 1 12 0 0     Sp p S p

p1 is an eigenvector of S and 
1 is the corresponding eigenvalue.

and 1 1 1T p p
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 Given a sample of M observations on a vector of N
variables

 Define the r-th PC of the sample by the chosen linear 
transformation

 
1

1
1

r N
T

r m r m mN mn nr
n

Nr

p

t x x x p

p


 
    
  

x p  

 1 2
T
m m m mNx x xx 

such that 

max ( )
r

rVar t
p

and 1T
r r p p

 cov , 0 1r lt t r l  
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 2 2 0  S p

2 2 2( ) TVar t  p Sp

 
2 2

2 2 2 2 2 2 2 1
, ,

max 1T T TL
 

    
p

p Sp p p p p

Lagrange multiplier 

By differentiating  2 2 2 1

1 2 2 1 2 1 1

2 0

2 2 0 0T T T

 

  

  

    

Sp p p

p Sp p p p p

p2 is an eigenvector of S and 
2 is the corresponding eigenvalue. 

2 1 2 1 1 2 1( , ) 0T TCov t t   p Sp p p 2 2 1T p p
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 In general

 The r-th largest eigenvalue of S is the variance of 
the r-th PC.

 The r-th PC retains the r-th greatest fraction of the 
variation in the sample.

max ( )
r

T
r r r rVar t  

p
p Sp
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 Given a sample of M observations on a vector of N
variables

 Define a vector of R PCs 

according to

where P is an orthogonal N X R matrix
whose r-th column is the r-th eigenvector pr of  S

 Then  = PTSP is the covariance matrix of the PCs, 
being diagonal with elements. 

 1 2
T
m m m mNx x xx 

 1 2 Rt t tt 
T
mt x P
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 The M observations of X in the sample are 
independent.

 X is drawn from an underlying population that 
follows a N-variable normal (Gaussian) 
distribution with the known covariance matrix S.
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PCA

 PCs can be computed via SVD:
 Select the columns of loading matrix P to correspond to the 

loading vectors V associated with the first R singular values.
 The projections of the observations in X into lower 

dimensional space are contained in score matrix               .
 The projection of T back into the N-dimensional observation 

space
 The residual matrix is                     .
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 1 2
T
m m m mNx x xx 

[m,n] = size(data);
cov = (data'*data)/(m-1);
[u,s,v] = svd(cov);
loads  = v(:,1:lv);
scores = data*loads;

[m,n] = size(data);
cov = (data'*data)/(m-1);
[u,s,v] = svd(cov);
loads  = v(:,1:lv);
scores = data*loads;

1
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Advanced: PCA NIPALS Algorithm

NIPALS (Nonlinear Iterative PArtial Least Squares)

 t (start) = column of X
 Regress all columns of X on t to get loadings: pT = tTX/tTt
 Normalize p to length 1: p = p/(pTp)1/2

 Regress rows of X on p to get scores: t = Xp/pTp = Xp
 Check convergence of t (not converged? go to step 2)
 At convergence: compute residual X = X - tpT

Residual matrices used as next X (→ 2)

NIPALS is a variant of power 
law method for computing 
eigenvalues of X
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PCA Provides an Overview of a Data Table

1. Transformation (optional)
2. Centering: subtract column 

averages
3. Scaling: usually, divide by 

column standard 
deviations

4. PCA = least squares 
projection of data onto 
(hyper)-plane

5. scores, t , are coordinates 
in the (hyper)-plane

6. loadings, p, define the 
direction of the (hyper)-
plane

1 1 2 2

 

T T T
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Determining Number of Loading Vectors 

 To avoid over-fitting in 
PCA, optimal dimensions 
should be selected.
» Cumulative percent 

variance
» Eigenvalue one criterion
» Average eigenvalue
» Cross validation

1t

2t

Rt

1Rt 

Nt

TV
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x

Data
Loading 
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Score 
Space

Residual 
Space

Loading 
Vectors
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Systematic or state variation

Random noise
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Optimal Dimension –– Cumulative Percent Variance

 Cumulative percent variance (CPV) measures the 
percent variance captured by the first R PCs, which 
can be expressed

 R PC is chosen if CPV(R) can explain a 
predetermined variance, say 95%.

1

1

( ) 100%

R

r
r
N

r
r

CPV R












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Optimal Dimension –– Eigenvalue One Criterion

 Only those PCs whose variances (equals to the 
corresponding eigenvalues of XTX) are greater than 
one are retained in the model.
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Optimal Dimension –– Average Eigenvalue

 Select the eigenvalues which are greater than the 
mean of all eigenvalues and discard eignevalues
smaller than the mean.
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Optimal Dimension –– Cross Validation

 The training set is divided into several blocks. Each time, 
one block (X) is left out, and PCA is performed on the 
remaining blocks. The PREdiction Sum of Squares 
(PRESS) statistics is calculated based on the block 
which is left out

 PRESS for one block is computed based on various 
dimensions of the score space using all the other blocks. 
It is repeated for each block. Adding all the resulting 
PRESS together gives a cumulative PRESS. The 
minimum cumulative PRESS determines the dimension 
of the score space. 

21 ˆ( )
( )

PRESS r
BlockSize N

 X X
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Optimal Dimension –– Cross Validation (LOO)

ˆ( ) ( )mn mn mne r x x r 

Left-out sample m

Left-out variable n

 2
( ) ( )

M N

mn
m n

PRESS r e r

  1

ˆ ( ) T
mn j

T T
i

x r






tp

t x P P P

Ref: Bro, R. et al. Cross-validation of component models: A critical look at 
current methods, Anal Bioanal Chem (2008) 390:1241–1251

»crossvalpca
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Illustrated Example: #PCs (SFCM)

 Chose the number of 
principal components 
to keep in the model.

Principal Eigenvalue % Variance     % Variance
Component         of               Captured Captured
Number Cov(X)            This  PC           Total
--------- ---------- ---------- ---------

1          7.64e+000         36.37 36.37
2          6.35e+000         30.25          66.62
3          2.13e+000         10.13          76.75
4          1.83e+000          8.72           85.47
5          8.20e-001          3.90           89.37
6          6.15e-001          2.93           92.30
7          4.21e-001          2.00           94.30
8          3.07e-001          1.46           95.77
9          2.30e-001          1.10           96.86

10         1.85e-001          0.88           97.74
11         1.30e-001          0.62           98.36
12         9.54e-002          0.45           98.82
13         7.71e-002          0.37           99.18
14         6.25e-002          0.30           99.48
15         4.41e-002          0.21           99.69
16         2.44e-002          0.12           99.81

»pcademo
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Illustrated Example: #PCs (SFCM)

 Chose the number of 
principal components to 
keep in the model.

 Cross validation suggests 
that up to 7 PCs should 
be the best. The relative 
size of the eigenvalues
suggests that 4 PCs
should be retained.
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TQ  e e

3x

2x
1x

1PC

2PC

e

Sample with large SPE
Unusual variation outside the model

Sample with large T2
Unusual variation inside the model

e

2 1T T
RT  x P P x

 T e I pp x
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2p

1p

2 1T T
RT  x P P x

2

2

( ) mean and coivariance are known

( 1)( 1)
( , ) covariance is estimated

( )

R

T R M M
F R M R

M M R







    

TQ  e e  T e I pp x

  01

2 0 00 2
1 2

1 1

12
1

h

h hh c
Q 






 

 
   

  

1

N
i

i j
j R

 
 

 
1 3

0 2
2

2
1

3
h

 


 



(C) 2008-2013 CPSE Lab. J. Chen

- 69
Illustrated Example: Control Charts (SFCM)

 Control limits can be placed on the process 
scores T2 and residual Q.

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20
Process Residual Q with 95 Percent Limit Based on 4 PC Model

Sample Number

R
es

id
u
al

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40
Value of T2 with 95 Percent Limit Based on 4 PC Model

Sample Number

V
a
lu

e 
of

 T
2

»pcademo

(C) 2008-2013 CPSE Lab. J. Chen

- 70
Illustrated Example: Test Set #1 (SFCM)

 At right near the end of the period, the Q residual goes over 
the 95% limit and stays there.

 The residual on the fifth variable is very large.  It is an 
indication that the sensor has failed. 
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Illustrated Example: Test Set #2 (SFCM)

 The scores from set #2 don't fall between the limits calculated for 
Train. The residual is also relatively large.

 From the score plot, it is even more evident that set #2 is very 
different.

 This indicates that a major change has taken place in the process.
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 T e I pp x
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Illustrated Example: Flow Rate System

3 1 2F F F 

4 3F F

But 

3 1 2F F F 

4 3F FWhy? 

Principal Eigenvalue % Variance     % Variance
Component         of                Captured Captured
Number Cov(X)            This  PC        Total
--------- ---------- ---------- ----------

1             2.27e+000            56.75 56.75
2             1.15e+000            28.74           85.49
3             3.87e-001               9.67           95.16
4             1.94e-001               4.84         100.00
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Flow Rate System: Abrupt Sensor Fault Detection

Fault!
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Flow Rate System: Abrupt Sensor Fault Detection

Fault!
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Flow Rate System: Ramp-type Sensor Fault 
Detection

Fault!
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3 1 2F F F 
Mass BalanceFault!
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Limitation of PCA Model for MSPC

3 1 2F F F 
Mass Balance

SPE contribution is unable to 
identify the correct fault sensor.

Fault!

Why? 
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80

Limitation of PCA Model for MSPC

3 1 2F F F 

3 3 1 1 2 2F T FT F T 

Mass Balance

Energy Balance

Fault!
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3 1 2F F F 
Mass Balance

SPE contribution is unable to 
identify the correct fault sensor.

Fault!

Why? 
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Dynamic Process of PCA Model for MSPC

Fault!
3 1 2F F F 

4 3( 7)F t F Time delay between F3 and F4

1 2 3 41 [ ( ) ( ) ( ) ( )]X F t F t F t F t

1 2 3 42 [ ( ) ( ) ( ) ( 7)]X F t F t F t F t 

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Sample Number

F
lo

w
 R

a
te

s

Normal Operation Data

 

 

F
1

F
2

F
3

»Lec5FlowsDealy



(C) 2008-2013 CPSE Lab. J. Chen

- 83
Dynamic Process of PCA Model for MSPC

Fault!
3 1 2F F F 

4 3( 7)F t F 
Time delay between F3 and F4

1 2 3 41 [ ( ) ( ) ( ) ( )]X F t F t F t F t 1 2 3 42 [ ( ) ( ) ( ) ( 7)]X F t F t F t F t 

Principal Eigenvalue % Variance     % Variance
Component         of            Captured Captured
Number Cov(X)        This  PC           Total

--------- ---------- ---------- ----------
1            2.47e+000         61.68 61.68
2            1.05e+000         26.31            87.98
3            3.22e-001          8.05             96.03
4            1.59e-001          3.97            100.00

Principal Eigenvalue % Variance     % Variance
Component         of             Captured Captured
Number Cov(X)          This  PC          Total

--------- ---------- ---------- ----------
1             2.66e+000         66.45 66.45
2             1.05e+000         26.36             92.81
3             1.71e-001          4.28               97.10
4             1.16e-001          2.90             100.00

To build a correct PCA model, it 
is important to include lagged 
variable when time delay exists.

»Lec5FlowsDealy
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Monitoring for Batch Processes

 Batch processes, unlike continuous reactors which 
are most often used for high-throughput plants, are 
also frequently used in situations where production 
rates are low.

 Increasing quality and performance demands 
require to drive processes near limits

» Batch polymerization reactors permit the production of 
polymer with a more narrow molecular weight 
distribution. 

» Batch fermentors use the lifecycle of the “bugs” to 
grow the organisms by feeding them substrate and 
letting them produce the desired chemical

 The batch reactor is quite flexible and can be used 
to produce a number of different products under a 
variety of conditions in the same vessel
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Microelectronics

Pharmaceuticals
& Biotechnology

Food

Specialty
Chemicals

Polymers

Batch
Processes

 Batch processes are widely used in many industries
 Reduced time-to-market, flexible operation

Batch Processes
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 Batch data presents a 3-
dimensional problem.

 With continuous processes it 
is just the relationships 
between the variables that are 
important. 

 Batch data includes the added 
dimension of time since the 
entire past history of the 
trajectory contributes to the 
overall performance of the 
process.

 To analyze the data, the 3-D 
matrix must first be unfolded.
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 Multi-way unfolding (Nomikos and MacGregor, 1994)

Batches (I)

Time (K)

Variables (J)

Batches V(1)

Time 

V(2) V(J)

Unfolding Batch Data
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 Apply PCA to the unfolded equalised batch data
 Extract the principal component score vectors
 Batch performance can be investigated 

Batches V(1)

Time 

V(2) V(J)

Score vector

~ examining batch 

variation

Loading vector

~ examining process behaviour 

over time for different variables

MPCA for Unfolding Batch Data
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 2hr are needed to finish one 
batch run

 12hr are needed to analyze 
the properties

Monomers

Water

Soap

Initiator

Chain Transfer 

Agent

Electrolyte

Emulsion

Batch

l 36 normal batches are collected
l Each batch has duration of 100 time 

intervals
l Ten variables are measured during each 

batch (temperatures, pressures and 
flowrate)

DuPont Batch Polymerization Data

(C) 2008-2011, 2012 CPSE Lab. J. Chen

J. Chen and K.-C. Liu, On-Line Batch Process Monitoring Using Dynamic PCA and Dynamic PLS Models, Chem. Eng. Sci., 57 (1) 63-75, 
2002.
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Probabilistic Modeling

 Input: A set of training data
 Procedure

1. Define the generative model
2. Derive the likelihood of the data
3. Specify model parameters
4. Bayesian: Assign priors (with some hyperparameters)
5. Model learning: find best parameters/hyperparameters
6. Inference: make prediction for test data via Bayes’ rule

 Advantages
» Deep foundation in probability theory and statistics
» Many learning and inference algorithms available

– Expectation Maximization, Variational Bayes, …
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x = Wt +μ + ε

• The PPCA model indicates that given the latent variable t, x is 
Gaussian distributed:

• If               , PPCA leads to PCA solution (up to a rotation and scaling 
factor)

( )N 2x t Wt +μ,σ I

 Latent variable model

Mean 
vector

02σ

Latent variable Noise process

(0, )N t  2(0, )N ε σ
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Probabilistic  PCA
Determination of parameters:

• Given observed variables x , the log likelihood function is :

• The parameters can be obtained by EM algorithm :
1

2 2ln ( | , , ) ln ( | , , )
n

n
i

p p


 x W x W  

E step : Using the observed variables 
and the current (fixed) parameters to 

compute latent variables

M step: Maximize the likelihood function 
with respect to parameters by the  latent 
variables from E step
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

Tipping, M. E.; Bishop, C. M. Probabilistic principal component analysis. J. R. 
Stat. Soc. 1999, 61, 611–622.
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- 94Supervised Probabilistic PLVR

 Supervised latent variable model

» Inputs and outputs are conditionally independent
» All input/output dimensions are conditionally independent

Noise process

2(0, )y yN ε σ
x x x

y y y

x = W t +μ + ε

y = W t +μ + ε

2( )x x xNx t W t +μ ,σ I 2( )y y yNy t W t +μ ,σ I
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 Idea: A PLVR model with missing data!

x1
...

xN1

xN1 +1
...

xN

y1
...

y N 1

X

Y
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- 97Nature of Process Data

 Very high dimensional data matrices
» Many variables and many observations

 Non-causal in nature
» Can’t generally use data to imply cause and effect relationships
» But can get informative correlation relationships

 Variables are not independent
» High correlation among variables – not independent

 Missing data
» 10-20 % missing is common

 Low signal to noise ratio
» Each variable contains little information – need multivariate 

methods

Need efficient multivariate methods to treat these problems!
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- 98Conclusion

 Clustering and projection are important tasks in 
DM

 Probabilistic modeling would be a good way to
apply to both tasks

 Joint clustering-projection models
» Principled way to iterate clustering and projection
» Convergence is guaranteed, with better performance


