

Modern Control Room

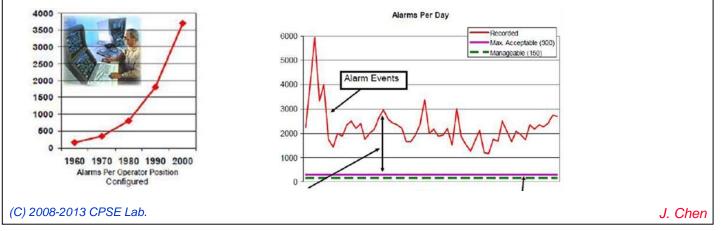
- Today, hardware and software advances has made it easy to add alarms at minimal cost
- Large increase in the quantity of alarms
- Reducing the quality and efficiency of alarms

(C) 2008-2013 CPSE Lab.

Industry standard and typical actual values of alarms

	EEMUA ³ standard	Oil and gas industry	Petrochemical industry
avg alarms/hr	6	36	54
avg standing alarms	9	50	100
peak alarms/hr	60	1320	1080

³Engineering Equipment and Materials User Associations



History of Repeated Accidents is Over and Again⁶

- Chernobyl, Ukraine, 1986 (more than 4000 direct and indirect deaths)
- Piper Alpha Oil Rig, North Sea, 1988 (167 deaths)
- Phillips 66 Complex, Texas, 1989 (23 deaths)
- BP Refinery, Texas City, 2005 (15 deaths)
- Ammonium nitrate explosions, Monclove, Mexico (2007)
- Cement failure in offshore oil rig
 - » Montana rig, East Timor sea (2009)
 - » Deepwater Horizon, Gulf of Mexico (2010)
- Fertilizer Plant Explosion, Texas (2013) (14 deaths)

The repetition of accidents tells us that we need a new look into control systems in the operating plant.

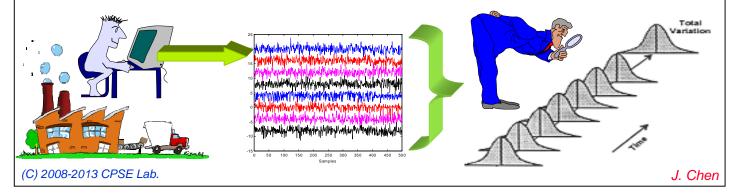
Example: Health Detection

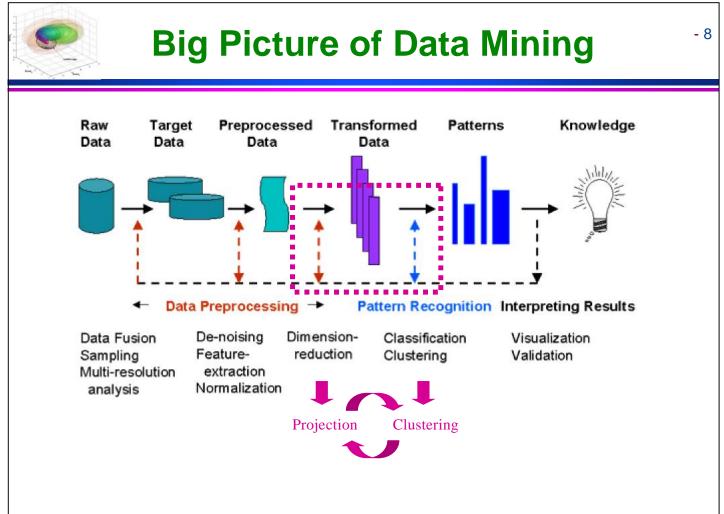
A doctor gathers information in stages to give a diagnosis: Var 1: Temperature Var 2: Blood pressure Var 3: Pain location

... further information might be useless

Var 4: Hair color

Let Data Talk





Quality Improvement and Statistics[®]

Definitions of Quality

Quality means fitness for use

- quality of design
- quality of conformance

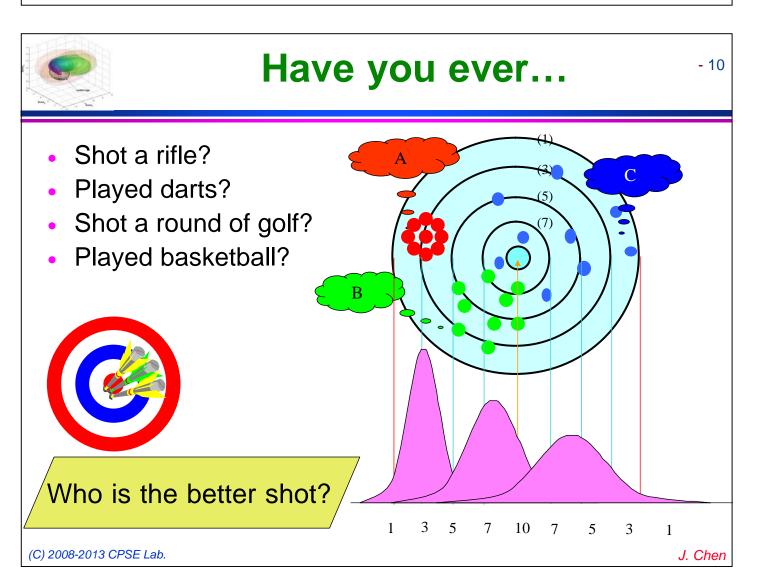
Quality is inversely proportional to variability.

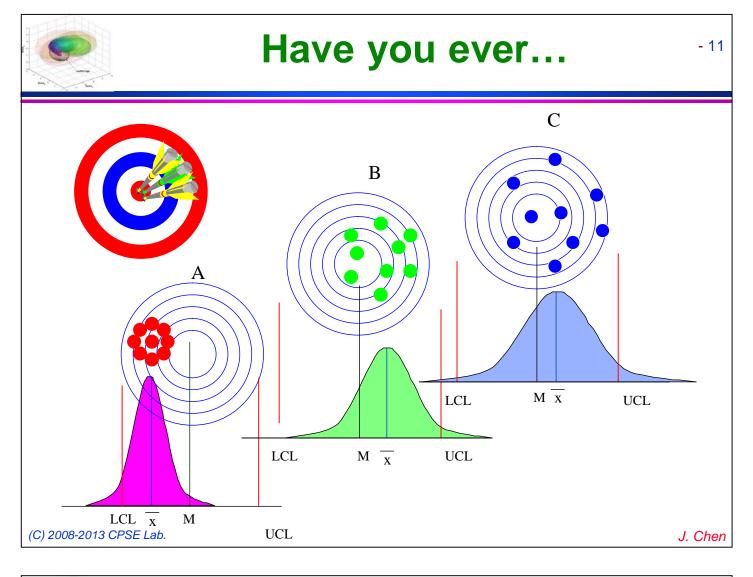
SPC has its origin in the 1920s. (Dr. Shewhart, Bell Lab.) The methodology is widely applied after World War II.

J. Chen

Statistical process control is a collection of tools that when used together can result in process stability and variance reduction.

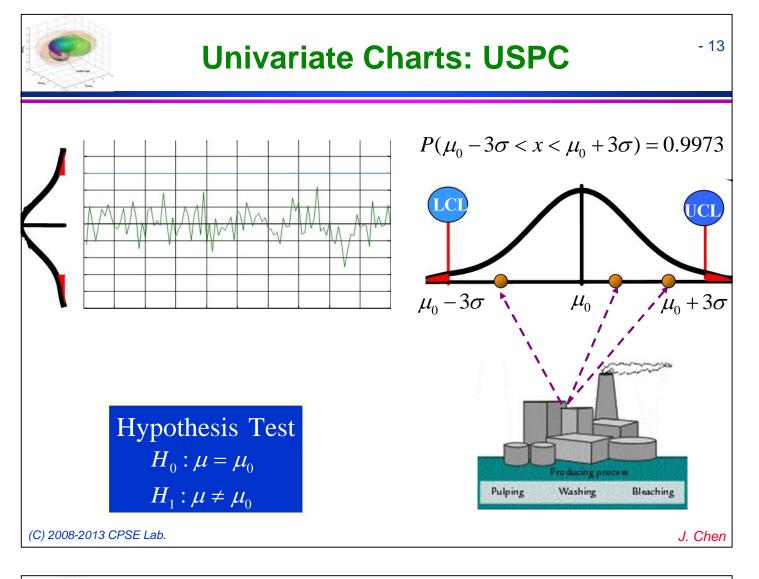
(C) 2008-2013 CPSE Lab.

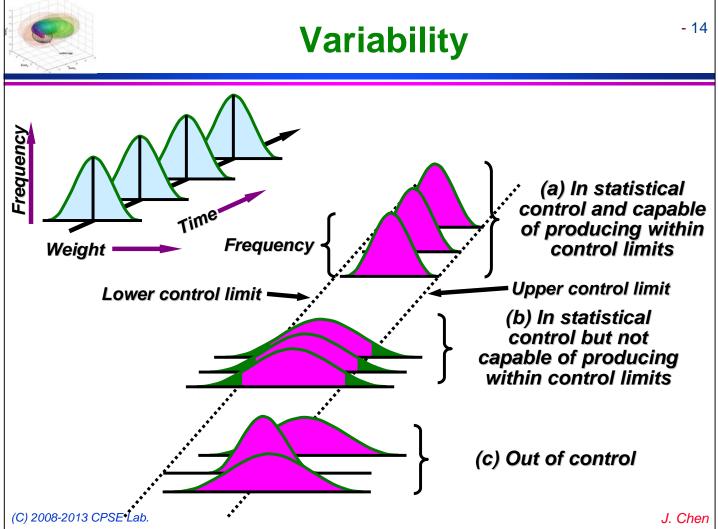




Basic Principles

- A process that is operating with only chance causes of variation present is said to be in statistical control.
- A process that is operating in the presence of **assignable causes** is said to be out of control.
- The eventual goal of SPC is the *elimination of variability* in the process.

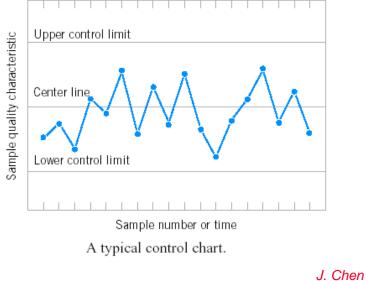




Basic Principles

A typical control chart has control limits set at values such that if the process is in control, nearly all points will lie within the upper control limit (UCL) and the

lower control limit (LCL).



(C) 2008-2013 CPSE Lab.

Control Charts

Basic Principles

General Model for a Control Chart

Let *W* be a sample statistic that measures some quality characteristic of interest, and suppose that the mean of *W* is μ_W and the standard deviation of *W* is σ_W .³ Then the **center line** (CL) the **upper control limit** (UCL) and the **lower control limit** (LCL) become

$$UCL = \mu_W + k\sigma_W$$
$$CL = \mu_W$$
$$LCL = \mu_W - k\sigma_W$$
(8-1)

where k is the "distance" of the control limits from the center line, expressed in standard deviation units.

Design of a Control Chart

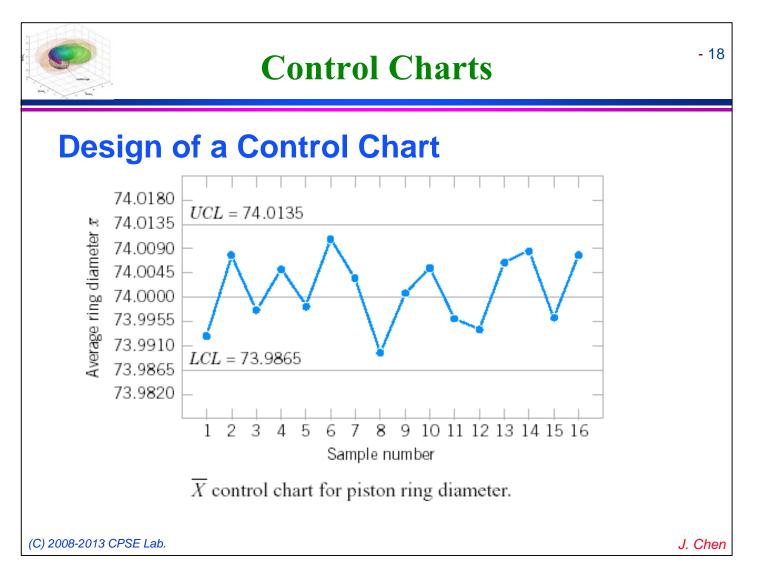
Suppose we have a process that we assume the true process mean is $\mu = 74$ and the process standard deviation is $\sigma = 0.01$. Samples of size 5 are taken giving a standard deviation of the sample average, average standard deviation is $\sigma = 0.01$

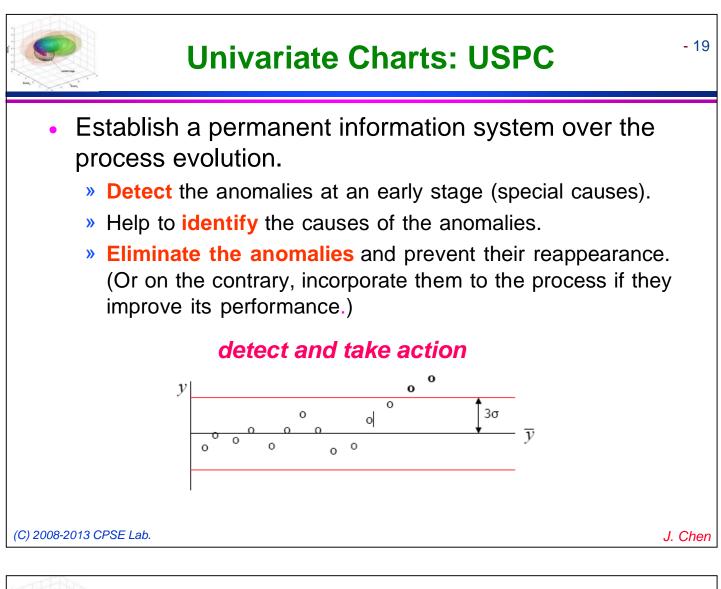
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{0.01}{\sqrt{5}} = 0.0045$$

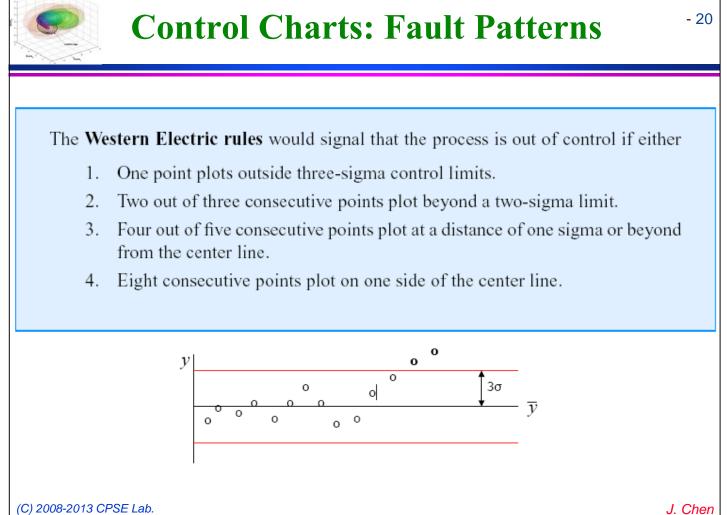
- Control limits can be set at 3 standard deviations from the mean in both directions.
- "3-Sigma Control Limits"

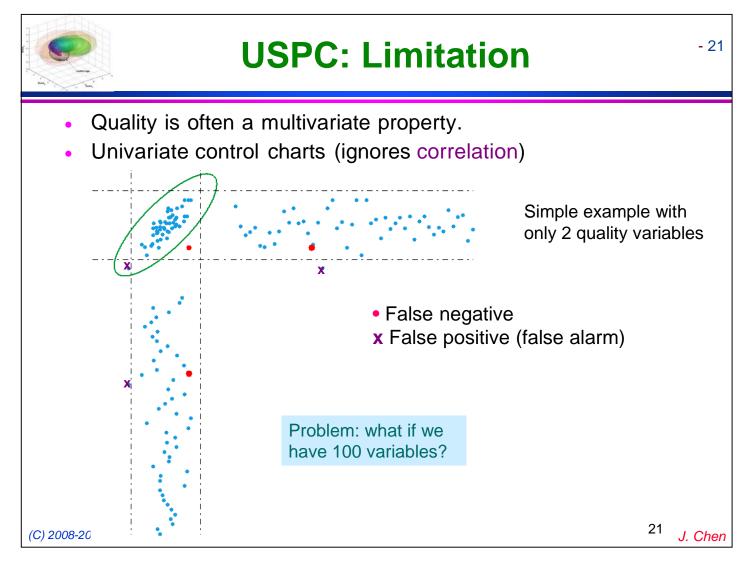
LCL = 74 - 3(0.0045) = 73.9865

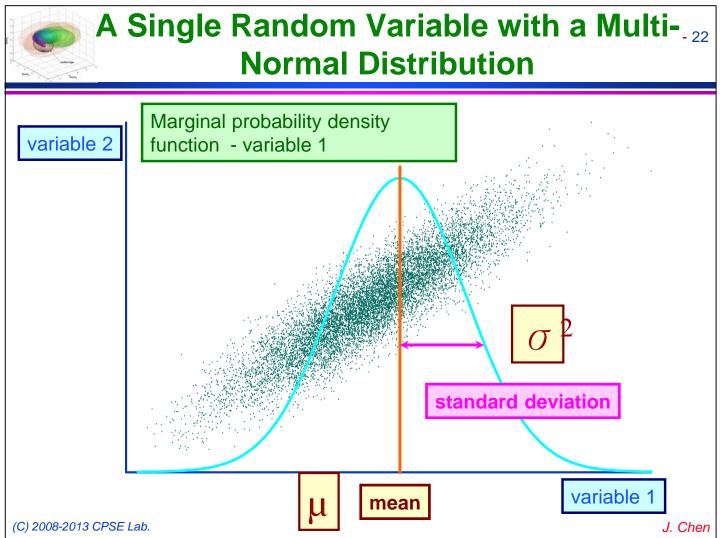
(C) 2008-2013 CPSE Lab.

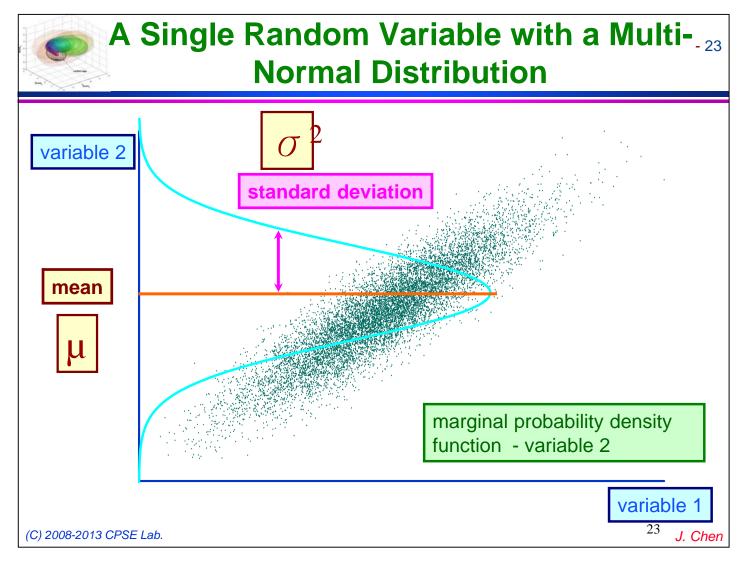


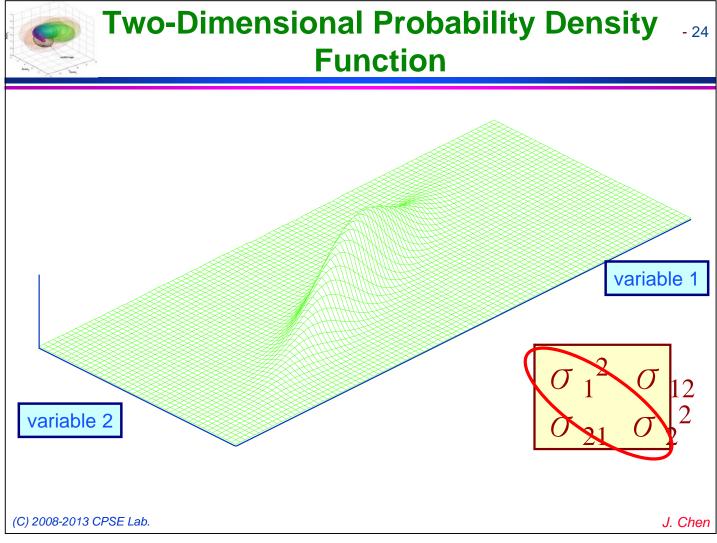


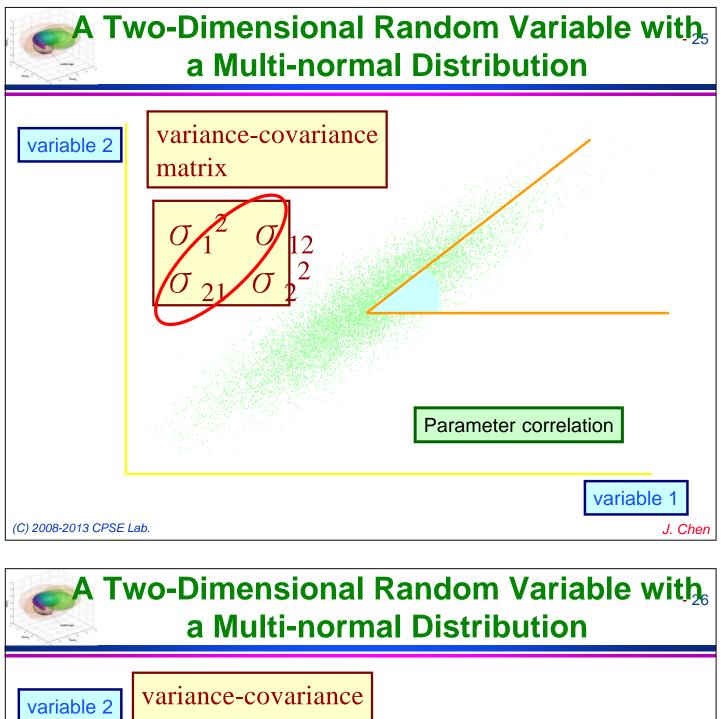


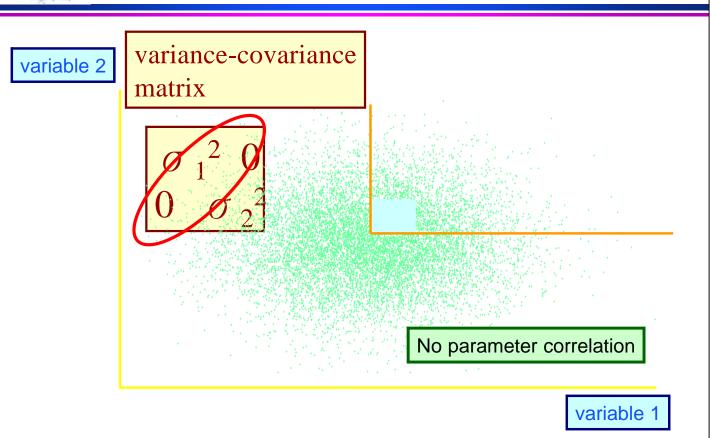










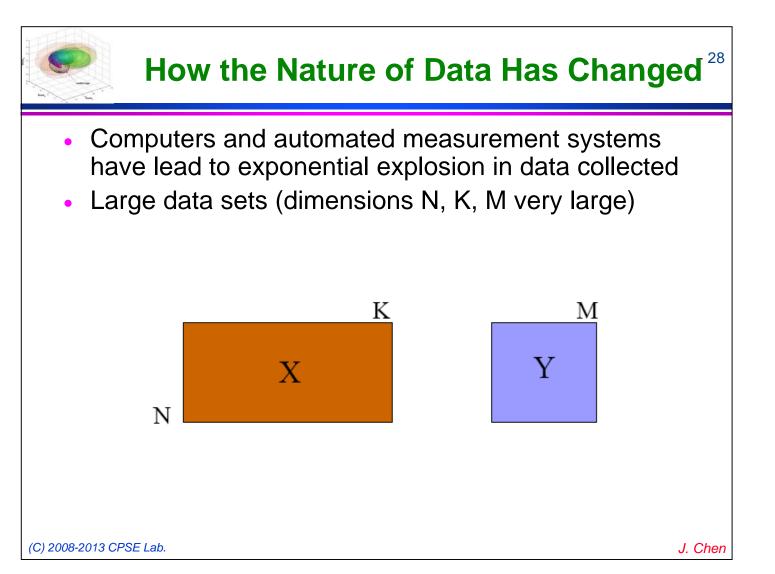


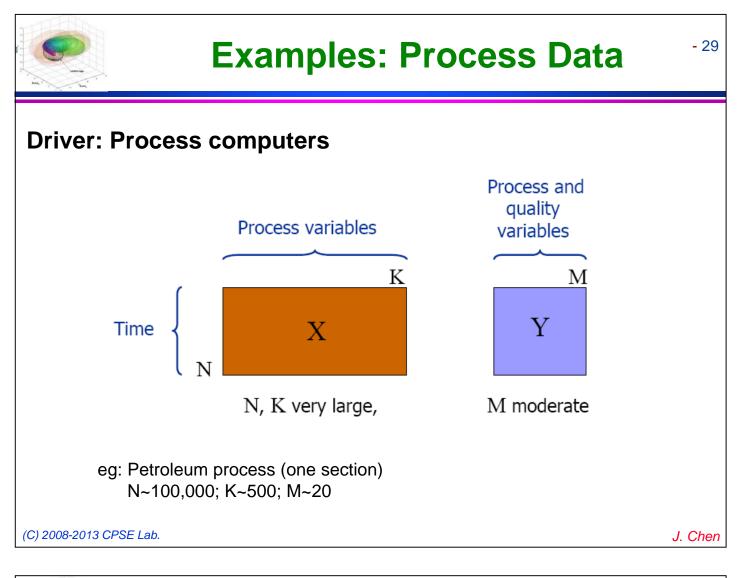
(C) 2008-2013 CPSE Lab.

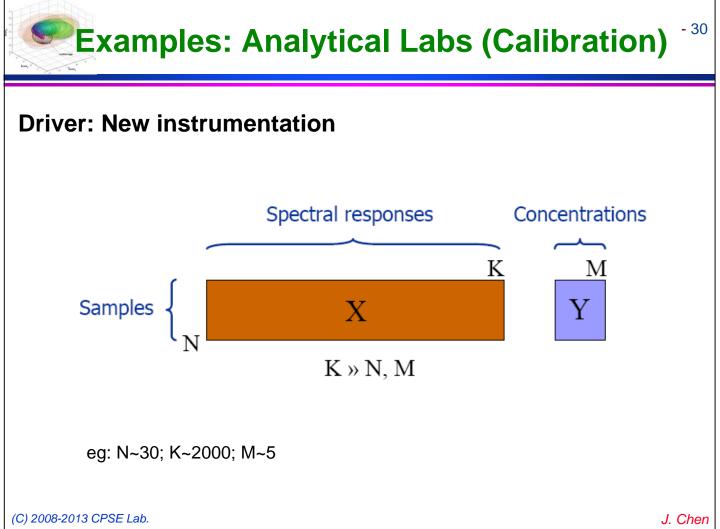
Example of a multivariate data set: A polymerization process, N=820 observations, K=160 variables.

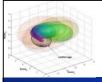
	1	2	3	4	5	6	7	8	9	10	11	1i_
1			1	2	3	4	5	6	7	8	9	11-
2	Nun	Name	A7-TOT-RA	FI-7524	CL21FD2H	CL21FD3C	CL21FDBS	CL21FDCL	CL21FDFR	CL21FDPH	APT40FDA	APT4
3	5	1997-01-05	108.969	141.445	1382.339	1477.49	480.507	205.915	181.471	4.91646	25.841	629
4	6	1997-01-06	107.523	132.548	1352.925	1517.79	458.897	221.667	215.75	5.01667	21.012	48(
5	7	1997-01-07	101.216	124.173	1608.593	1615.98	379.442	209.667	179.25	5.0875	14.396	46)
6	8	1997-01-08	102.622	133.643	1539.103	1543.91	423.319	190.792	130.292	5.40417	12.579	58!
7	9	1997-01-09	99.397	126.341	1515.025	1677.23	469.441	190.042	171.25	5.09583	14.858	51!
8	10	1997-01-10	105.905	127.984	1448.984	1527.06	436.526	205.875	156.875	5.3	9.55	60(
9	11	1997-01-11	100.526	128.936	1554.426	1620.04	469.025	187.167	157.583	5.35833	13.012	61'
10	12	1997-01-12	99.083	118.565	1357.026	1534.48	477.099	188.5	170.708	5.05	29	
11	13	1997-01-13	75.488	133.783	1312.41	1540.65	486.51	199.667	152.625	4.825	28.142	589
12	14	1997-01-14	101.859	129.431	1342.626	1570.43	453.163	183.125	173.125	5.13333	25.387	74:
13	15	1997-01-15	91.129	125.117		1580.18	393.976	194.375	205.292	5.3625	8.275	664
14	16	1997-01-16	99.541	113.348	1153.555	1566	414.865	209.292	184.208	5.02917	13.004	42:
15	17	1997-01-17	111.868	134.914	1135.873	1544.31	394.416	238.708	203.542	5.10417	19.817	599
16	18	1997-01-18	105.881	135.835	1752.73	1655.11	372.792	223.292	156.208	5.14583	20.133	7(
17	19	1997-01-19	104.64	138.174	1271.098	1648.07	392.613	227.375	158.208	4.85833	12.813	73(
18	20	1997-01-20	103.402	142.803	1219.477	1598.88	402.706	238.083	196.917	5.1	2.888	69′ ▶

(C) 2008-2013 CPSE Lab.









More Problems ... and More Data

- Traditional SPC chart monitors single variables, often just the quality variables, Y.
- For SPC why not use process variables X?
- Why use the X-variables ?
 - » Many more X variables available than Y
 - Use easily available process measurements to build a soft sensor.
 Temperatures, pressures, flows, levels, etc.
 - » X's are on-line (real-time), Y's are often off-line (lab)
 - » X's are more frequent, and often more precise
 - » Fingerprints of faults are in the X's
 - » More faults may be detected with the X's, than with Y's

(C) 2008-2013 CPSE Lab.

Geometry of Principal Component Analysis³²

	x 1		x2				
Obs <mark>Original</mark>		Corrected	Original	Corrected			
1	16	8	8	5			
2	12	4	10	7			
3	13	5	6	3			
4	11	3	2	-1			
5	10	2	8	5			
6	9	1	-1	-4			
7	8	0	4	1			
8	7	-1	6	3			
9	5	-3	-3	-6			
10	3	-5	-1	-4			
11	2	-6	-3	-6			
12	0	-8	0	-3			
Mean	8	0	3	0			
Var 23.091 23.091 21.091 21.091							
$\frac{\frac{1}{12}\sum_{m=1}^{12} (x_{m,1} - \overline{x}_1)^2}{2008-2013 CPSE Lab.} \qquad \frac{1}{12}\sum_{m=1}^{12} (x_{m,2} - \overline{x}_2)^2$							

- 12 observations and 2 variables
- Center and scale the variables to have equal basis.
- Total variances of variables are 44.182 (i.e. 23.091+21.091).
- The percentages of the total variance accounted for x1 and x2 are 52.26% and 47.74%.
- Correlation coefficient is 0.746.

$$r_{i,j=} \frac{1}{12} \sum_{m=1}^{12} \left(x_{m,i} - \overline{x}_i \right) \left(x_{m,j} - \overline{x}_j \right)$$

$$\begin{bmatrix} 1 & 0.746 \\ 0.746 & 1 \end{bmatrix}$$

J. Chen

- 31

Geometry of Principal Component Analysis³³

×°

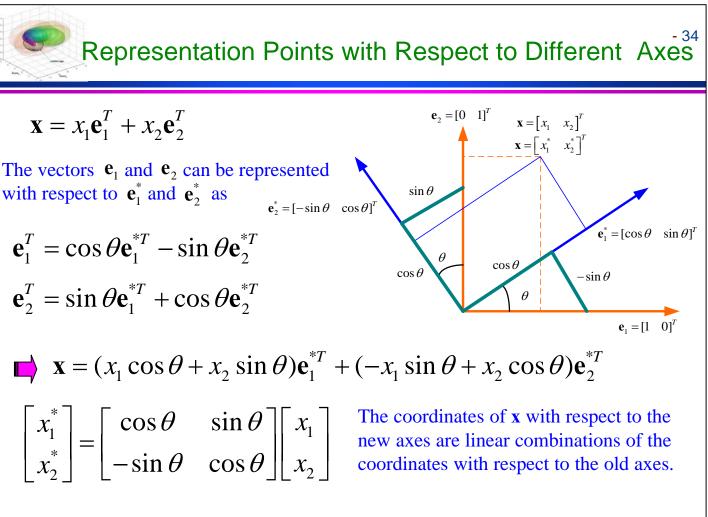
-6∟ -10

Obs	x1	x2	x1*
1	8	5	8.747
2	4	7	5.155
3	5	3	5.445
4	3	-1	2.781
5	2	5	2.838
6	1	-4	0.29
7	0	1	0.174
8	-1	3	-0.464
9	-3	-6	-3.996
10	-5	-4	-5.619
11	-6	-6	-6.951
12	-8	-3	-8.399
Mean	0	0	0
Var	23.091	21.091	28.659

»Lec5PC1

(C) 2008-2013 CPSE Lab.

(C) 2008-2013 CPSE Lab.



- New variable x1* for a rotation of 10 degree
- The projection of the observations onto x1 gives the coordinate of the observation with respect to x1*. $x_1^* = x_1 \cos \theta + x_2 \sin \theta$

2

10

Variance Accounted for New Variables x1 for Various New Axes

Angle with x1	Total Var.	Var. of x1*	%
0	44.182	23.091	52.263
10	44.182	28.659	64.866
20	44.182	33.434	75.676
30	44.182	36.841	83.387
40	44.182	38.469	87.072
43.261	44.182	38.576	87.312
50	44.182	38.122	86.282
60	44.182	35.841	81.117
70	44.182	31.902	72.195
80	44.182	26.779	60.597
90	44.182	21.091	47.772

- The percentage of the total variance accounted for x1 increases as the angle between x1* and x1 increases and then, after a certain maximum value, the variance accounted for x1* begins to decrease.
- There is one and only one new axis that results in a new variable accounting for the maximum variance in the data.

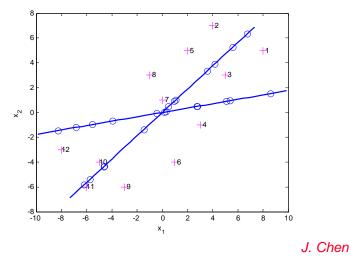
(C) 2008-2013 CPSE Lab.

Variance Accounted for New Variables x1 for _36 New Axes Making an Angle of 43.261

OBS	x1	x2	x1*	x2*
1	8	5	9.253	-1.841
2	4	7	7.71	2.356
3	5	3	5.697	-1.242
4	3	-1	1.499	-2.784
5	2	5	4.883	2.271
6	1	-4	-2.013	-3.598
7	0	1	0.685	0.728
8	-1	3	1.328	2.87
9	-3	-6	-6.297	-2. 313
10	-5	-4	-6.382	0.514
11	-6	-6	-8.481	-0.257
12	-8	-3	-7.882	3.298
Mean	0	0	0	0
Var.	23.091	21.091	38.572	5.606

»Lec5PC2 C) 2008-2013 CPSE Lab.

- The percentage of the total variance accounted for x1* is about 87.31% (38.576/44.182) of the total variance in the data.
- The second axis accounts for the maximum of the variance that is not accounted for x1*.



Starting Point: Problem \Rightarrow Data Table X (N x \check{K})³⁷

- Data set = table (matrix)
 N objects and K variables
- Often many variables large K
- Often few observations (K>>N) or many of both (N and K large)
- Missing data

(C) 2008-2013 CPSE Lab.

 Poor data: clusters and collinearity

- Objects (rows):
 - » Analytical samples
 - » Process time points
 - » Trials (experim. runs)
 - » Chemical compounds, ...

Variables (columns):

- » Sensors (T, P, flow, pH, conc.,...)
- Chromatographic Peaks (HPLC, GC, Electrophoresis, ...)
- » Laboratory assays

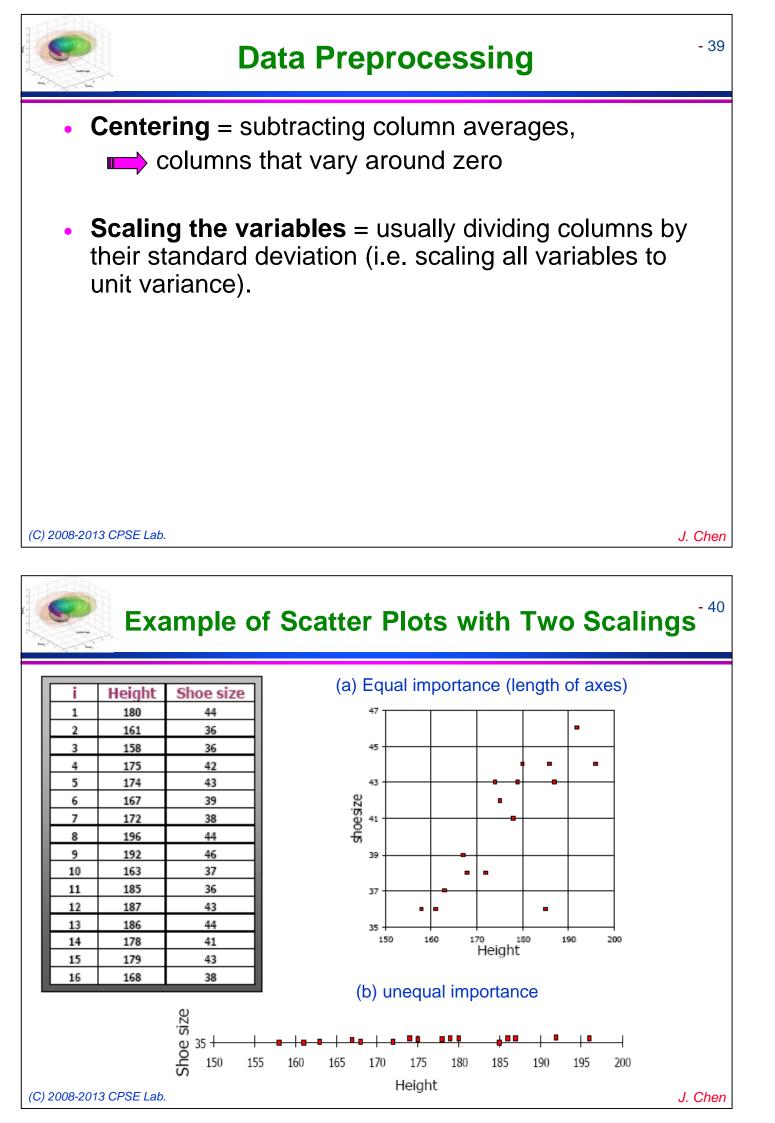
J. Chen

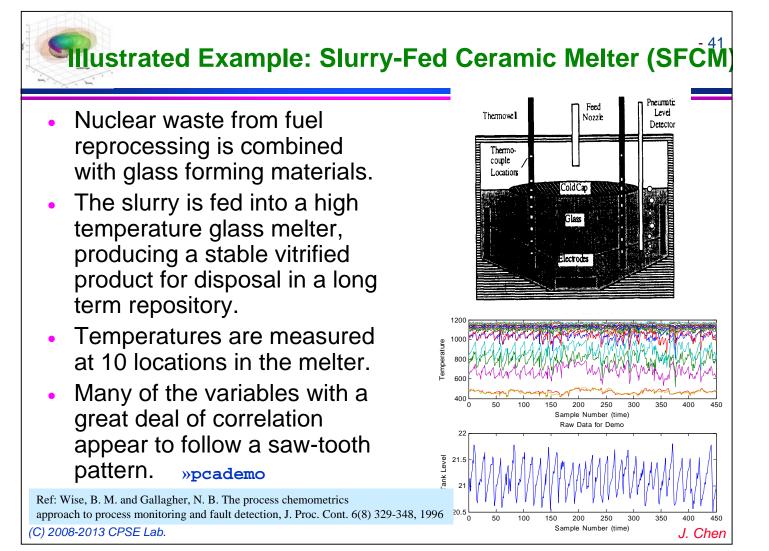
Data Tables (Matrices)

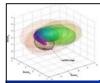
- 38

Example of a multivariate data set: A polymerization process, N=820 observations, K=160 variables.

D	ata se	et - allied										_ 🗆 ×
	1	2	3	4	5	6	7	8	9	10	11	1; <u></u> ≜
1			1	2	3	4	5	6	7	8	9	<mark>1(</mark>
2	Nun	Name	A7-TOT-RA	FI-7524	CL21FD2H	CL21FD3C	CL21FDBS	CL21FDCL	CL21FDFR	CL21FDPH	APT40FDA	APT4
3	5	1997-01-05	108.969	141.445	1382.339	1477.49	480.507	205.915	181.471	4.91646	25.841	629
4	6	1997-01-06	107.523	132.548	1352.925	1517.79	458.897	221.667	215.75	5.01667	21.012	48(
5	7	1997-01-07	101.216	124.173	1608.593	1615.98	379.442	209.667	179.25	5.0875	14.396	46
6	8	1997-01-08	102.622	133.643	1539.103	1543.91	423.319	190.792	130.292	5.40417	12.579	58!
7	9	1997-01-09	99.397	126.341	1515.025	1677.23	469.441	190.042	171.25	5.09583	14.858	51!
8	10	1997-01-10	105.905	127.984	1448.984	1527.06	436.526	205.875	156.875	5.3	9.55	60(
9	11	1997-01-11	100.526	128.936	1554.426	1620.04	469.025	187.167	157.583	5.35833	13.012	61'
10	12	1997-01-12	99.083	118.565	1357.026	1534.48	477.099	188.5	170.708	5.05	29	
11	13	1997-01-13	75.488	133.783	1312.41	1540.65	486.51	199.667	152.625	4.825	28.142	589
12	14	1997-01-14	101.859	129.431	1342.626	1570.43	453.163	183.125	173.125	5.13333	25.387	74:
13	15	1997-01-15	91.129	125.117		1580.18	393.976	194.375	205.292	5.3625	8.275	664
14	16	1997-01-16	99.541	113.348	1153.555	1566	414.865	209.292	184.208	5.02917	13.004	42:
15	17	1997-01-17	111.868	134.914	1135.873	1544.31	394.416	238.708	203.542	5.10417	19.817	599
16	18	1997-01-18	105.881	135.835	1752.73	1655.11	372.792	223.292	156.208	5.14583	20.133	7(
17	19	1997-01-19	104.64	138.174	1271.098	1648.07	392.613	227.375	158.208	4.85833	12.813	73(
18 ∢	20	1997-01-20	103.402	142.803	1219.477	1598.88	402.706	238.083	196.917	5.1	2.888	69'▼ ▶

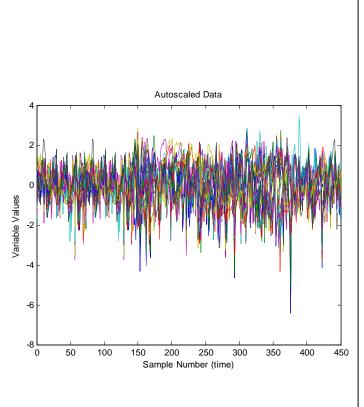






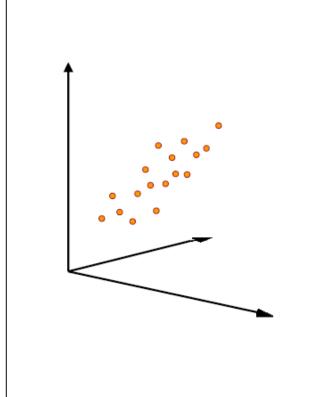
Illustrated Example: Scaled Data (SFCM)²

- The first thing we want to do is to scale data before the data apply to PCA.
- If there are only temperature data, an argument can be made for mean centering of the data. Now the inclusion of a level measurement argues for autoscaling.
- Now, the data distributions look better.



»pcademo

PCA - Geometric interpretation : Objects/Points



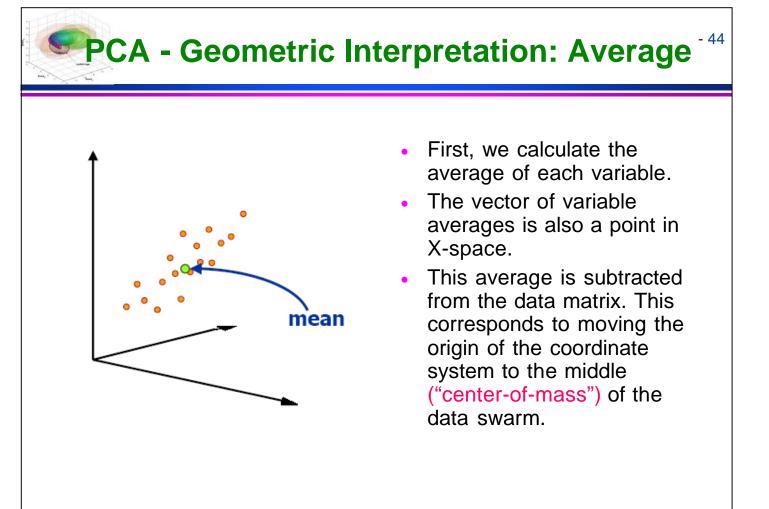
 We construct a space, with K dimensions for the matrix of data, X.

This is called the "X-space".

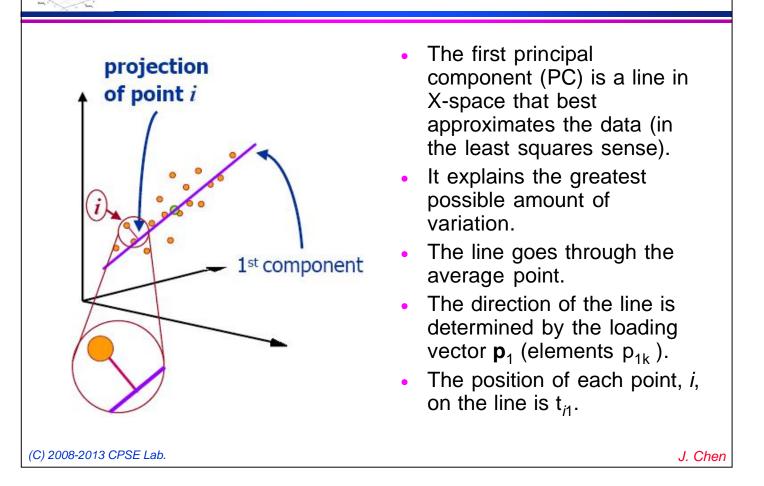
- Each variable has one coordinate axis, with the length determined by its scaling, usually unit variance.
- Each row or object in X is represented by one point in X-space.
- The data matrix X represents a swarm of points in this space.

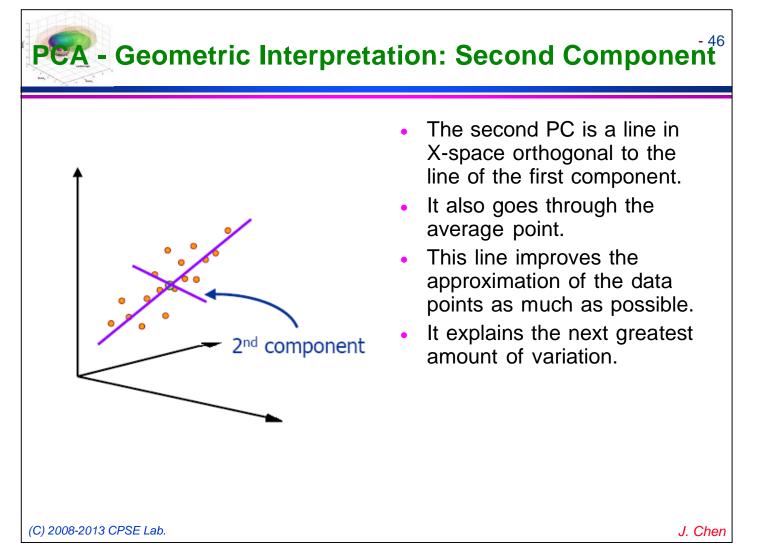
J. Chen

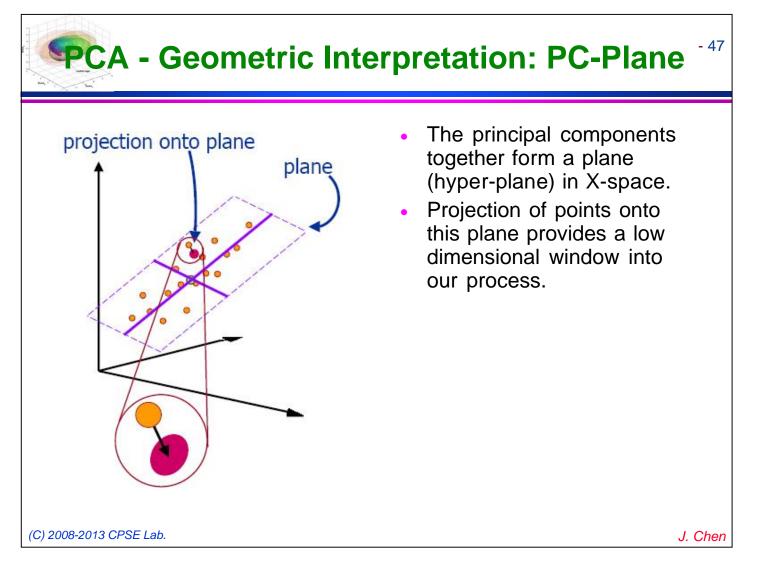
(C) 2008-2013 CPSE Lab.



PCA - Geometric Interpretation: First Component⁴⁵







- 48 **Algebraic Definition of 1st PC**

Given a sample of M observations on a vector of Nvariables

$$\mathbf{x}_m^T = \begin{bmatrix} x_{m1} & x_{m2} & \cdots & x_{mN} \end{bmatrix}$$

Define the first principal component of the sample by the chosen linear transformation

$$t_{m1} = \mathbf{x}_m^T \mathbf{p}_1 = \begin{bmatrix} x_{m1} & \cdots & x_{mN} \end{bmatrix} \begin{bmatrix} p_{11} \\ \vdots \\ p_{N1} \end{bmatrix} = \sum_{n=1}^N x_{mn} p_{n1}$$

such that

max $Var(t_1)$ and $\mathbf{p}_1^T \mathbf{p}_1 = 1$ \mathbf{p}_1

Algebraic Derivation of p₁

Algebraic Definition of r-th PC

Given a sample of *M* observations on a vector of *N* variables

$$\mathbf{x}_m^T = \begin{bmatrix} x_{m1} & x_{m2} & \cdots & x_{mN} \end{bmatrix}$$

Define the *r*-th PC of the sample by the chosen linear transformation

$$t_r = \mathbf{x}_m^T \mathbf{p}_r = \begin{bmatrix} x_{m1} & \cdots & x_{mN} \end{bmatrix} \begin{bmatrix} p_{1r} \\ \vdots \\ p_{Nr} \end{bmatrix} = \sum_{n=1}^N x_{mn} p_{nr}$$

such that

 $\max_{\mathbf{p}_r} Var(t_r) \qquad \text{and} \qquad$

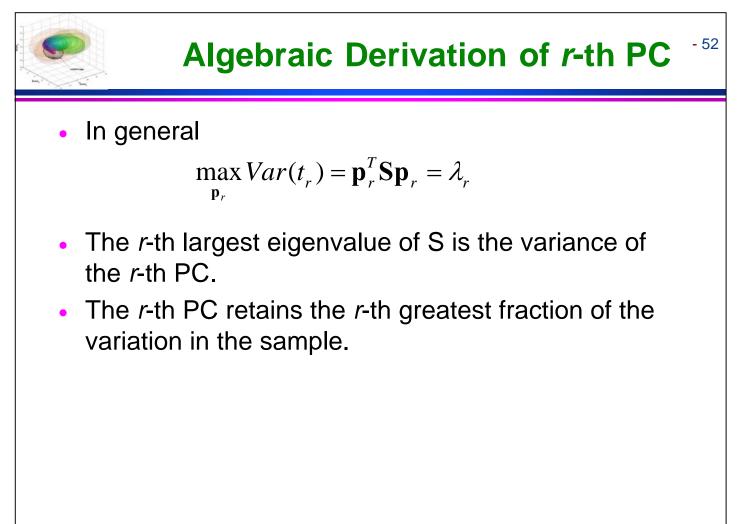
 $\operatorname{cov}(t_r, t_l) = 0 \qquad r > l \ge 1$

 $\mathbf{p}_r^T \mathbf{p}_r = 1$

(C) 2008-2013 CPSE Lab.

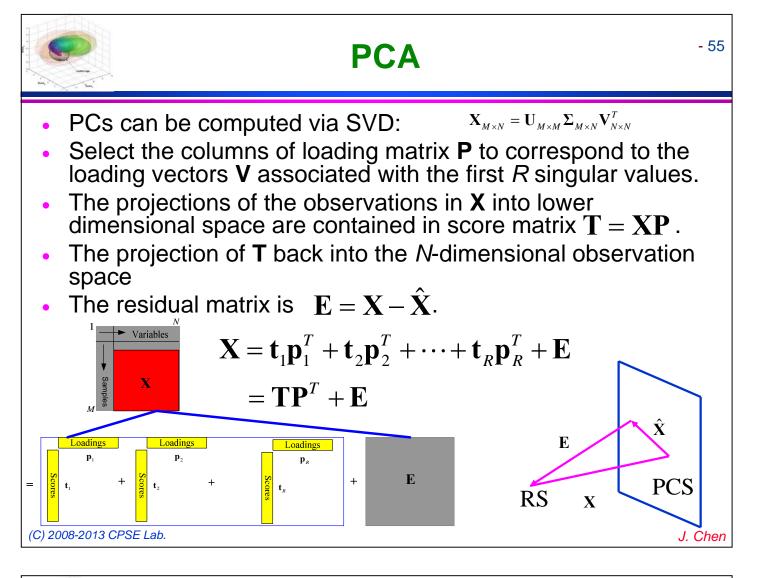
J. Chen

$\begin{array}{c} & \text{Algebraic Derivation of } \mathbf{p}_{2} \end{array} \right)^{-51} \\ \hline & \text{Var}(t_{2}) = \mathbf{p}_{2}^{T} \mathbf{S} \mathbf{p}_{2} \quad Cov(t_{2},t_{1}) = \mathbf{p}_{2}^{T} \mathbf{S} \mathbf{p}_{1} = \lambda_{1} \mathbf{p}_{2}^{T} \mathbf{p}_{1} = 0 \qquad \mathbf{p}_{2}^{T} \mathbf{p}_{2} = 1 \\ \text{Lagrange multiplier} \\ & \max_{\mathbf{p}_{2},\lambda_{2},\phi} L_{2} = \mathbf{p}_{2}^{T} \mathbf{S} \mathbf{p}_{2} - \lambda_{2} \left(\mathbf{p}_{2}^{T} \mathbf{p}_{2} - 1 \right) - \phi \mathbf{p}_{2}^{T} \mathbf{p}_{1} \\ \text{By differentiating } 2 \left(\mathbf{S} \mathbf{p}_{2} - \lambda_{2} \mathbf{p}_{2} \right) - \phi \mathbf{p}_{1} = 0 \\ & \qquad 2 \mathbf{p}_{1}^{T} \mathbf{S} \mathbf{p}_{2} - 2\lambda_{2} \mathbf{p}_{1}^{T} \mathbf{p}_{2} - \phi \mathbf{p}_{1}^{T} \mathbf{p}_{1} = 0 \Rightarrow \phi = 0 \\ & \Rightarrow \left(\mathbf{S} - \lambda_{2} \right) \mathbf{p}_{2} = 0 \\ \end{array} \right) \\ & \mathbf{p}_{2} \text{ is an eigenvector of S and} \\ & \lambda_{2} \text{ is the corresponding eigenvalue.} \end{array}$



• 53 • Given a sample of *M* observations on a vector of *N* variables $\mathbf{x}_{m}^{T} = \begin{bmatrix} x_{m1} & x_{m2} & \cdots & x_{mN} \end{bmatrix}$ • Define a vector of *R* PCs $\mathbf{t} = \begin{bmatrix} t_{1} & t_{2} & \cdots & t_{R} \end{bmatrix}$ according to $\mathbf{t} = \mathbf{x}_{m}^{T} \mathbf{P}$ where **P** is an orthogonal *N* X *R* matrix whose *r*-th column is the *r*-th eigenvector \mathbf{p}_{r} of S • Then $\Lambda = \mathbf{P}^{T} \mathbf{S} \mathbf{P}$ is the covariance matrix of the PCs, being diagonal with elements.

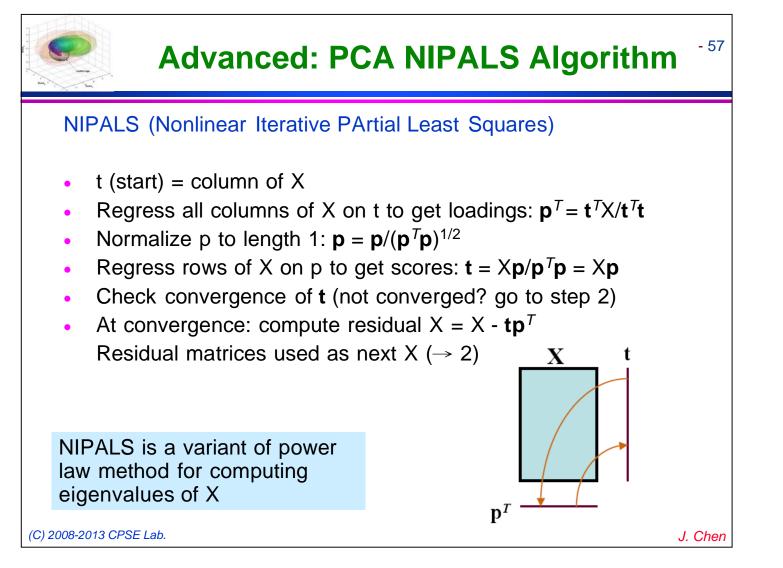
Probability Distribution for Sample PCs⁵⁴ The *M* observations of X in the sample are independent. X is drawn from an underlying population that follows a *N*-variable normal (Gaussian) distribution with the known covariance matrix S.



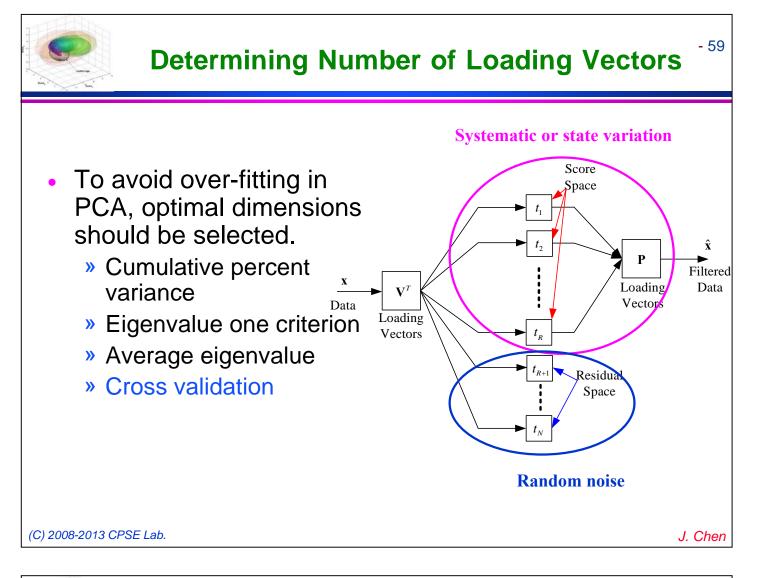
PCA: MATLA	B Codes
------------	----------------

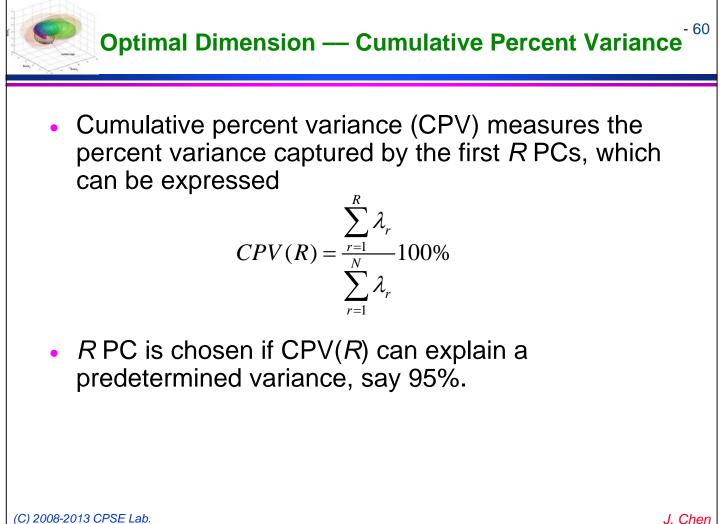
- 56

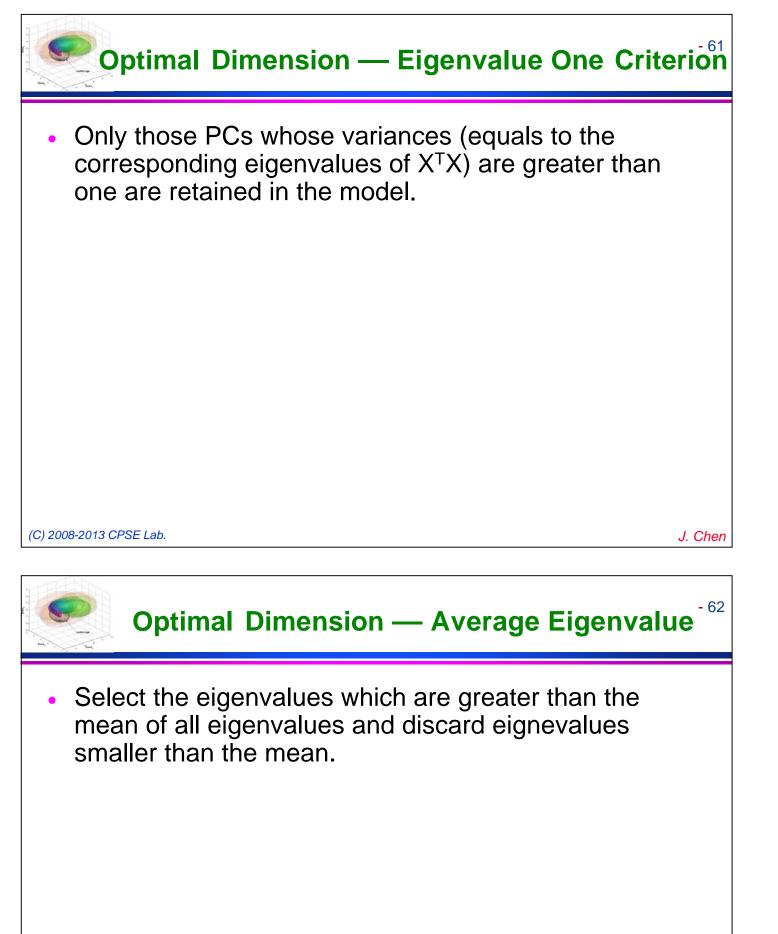
 $\begin{bmatrix} \mathbf{m}, \mathbf{n} \end{bmatrix} = \text{size}(\text{data}); \\ \text{cov} = (\text{data}^{*}\text{data})/(\mathbf{m}-1); \\ [\mathbf{u}, \mathbf{s}, \mathbf{v}] = \text{svd}(\text{cov}); \\ \text{loads} = \mathbf{v}(:, 1: | \mathbf{v}); \\ \text{scores} = \text{data}^{*}\text{loads}; \\ \mathbf{X} = \begin{bmatrix} \mathbf{X}_{1}^{T} \\ \vdots \\ \mathbf{X}_{m}^{T} \\ \vdots \\ \mathbf{X}_{m}^{T} \end{bmatrix} \quad \mathbf{X}_{m}^{T} = \begin{bmatrix} x_{m1} & x_{m2} & \cdots & x_{mN} \end{bmatrix} \\ \mathbf{X} = \mathbf{t}_{1}\mathbf{p}_{1}^{T} + \mathbf{t}_{2}\mathbf{p}_{2}^{T} + \cdots + \mathbf{t}_{R}\mathbf{p}_{R}^{T} + \mathbf{E} \\ = \mathbf{T}\mathbf{P}^{T} + \mathbf{E} \\ = \mathbf{T}\mathbf{P}^{T} + \mathbf{E} \end{aligned}$

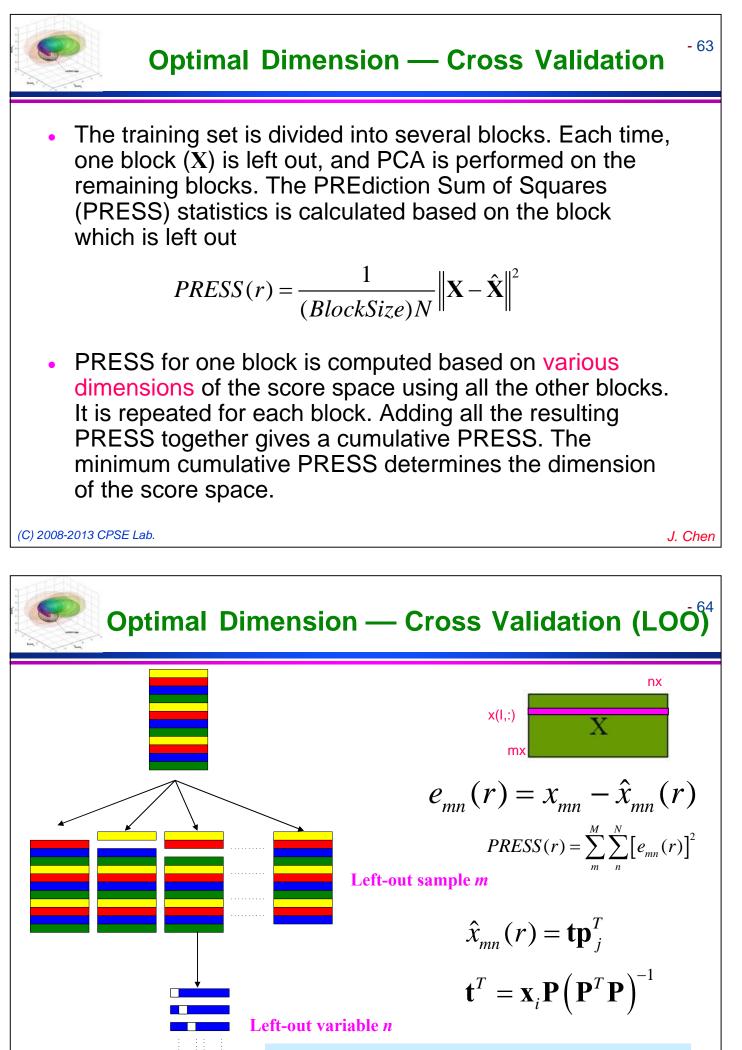


- 58 PCA Provides an Overview of a Data Table Transformation (optional) 1. Т Centering: subtract column 2. averages Х Scaling: usually, divide by 3. column standard PT deviations PCA = least squares 4. projection of data onto (hyper)-plane scores, t, are coordinates 5. in the (hyper)-plane loadings, p, define the 6. direction of the (hyper)plane $\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1^T + \mathbf{t}_2 \mathbf{p}_2^T + \dots + \mathbf{t}_R \mathbf{p}_R^T + \mathbf{E}$ $= \mathbf{T}\mathbf{P}^T + \mathbf{E}$ (C) 2008-2013 CPSE Lab.









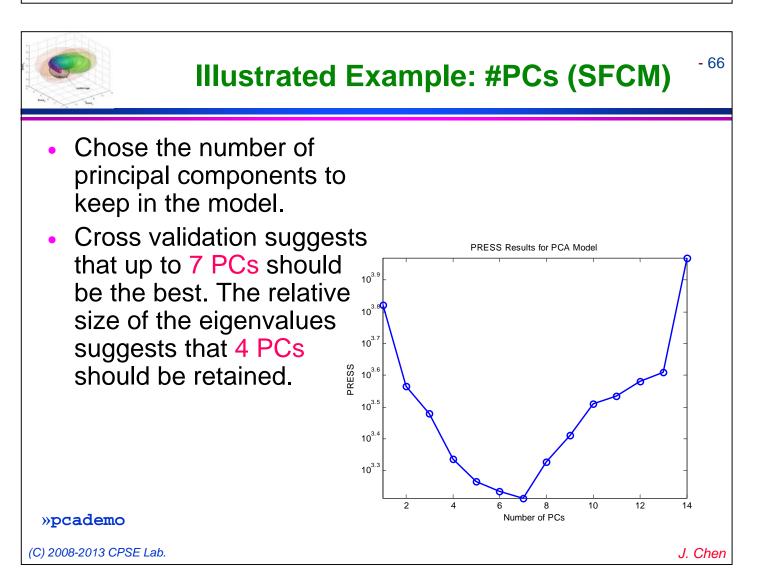
Ref: Bro, R. et al. Cross-validation of component models: A critical look at current methods, Anal Bioanal Chem (2008) 390:1241–1251

(C) 2008-2013 CPSE Lab.

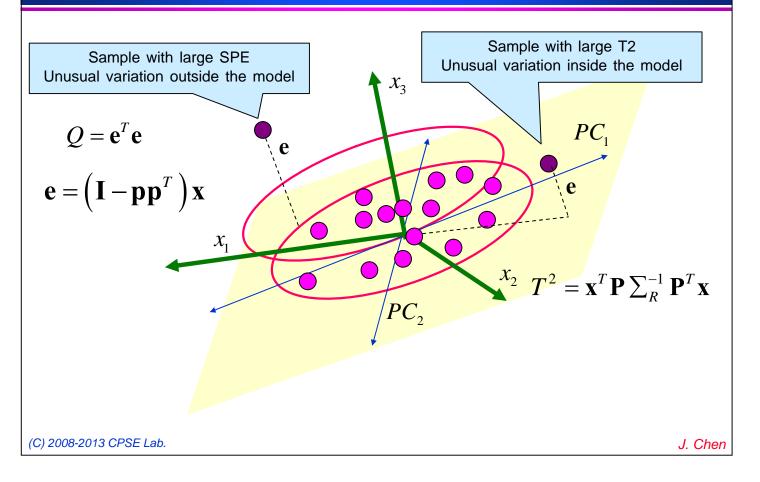
»crossvalpca

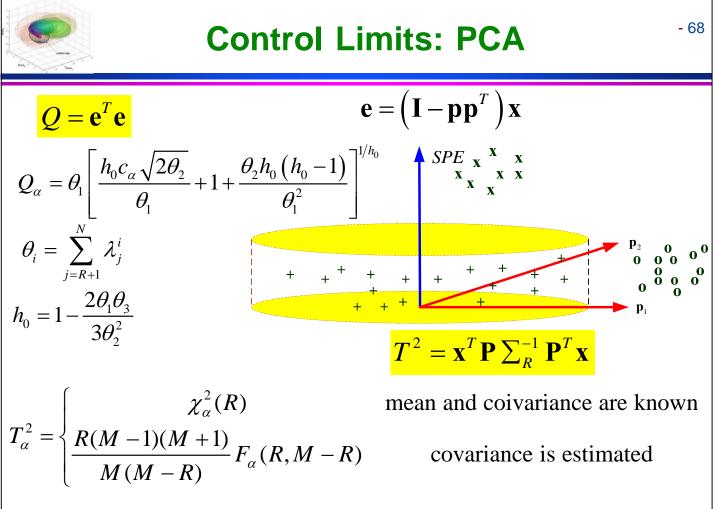
Illustrated Example: #PCs (SFCM)

Chose the number of	Principal Componer	Eigenvalue nt of	% Variance Captured	% Variance Captured
principal components	Number	Cov(X)	This PC	Total
to keep in the model.				
·	1	7.64e+000	36.37	36.37
	2	6.35e+000	30.25	66.62
	3	2.13e+000	10.13	76.75
	4	1.83e+000	8.72	85.47
	5	8.20e-001	3.90	89.37
	6	6.15e-001	2.93	92.30
	7	4.21e-001	2.00	94.30
	8	3.07e-001	1.46	95.77
	9	2.30e-001	1.10	96.86
	10	1.85e-001	0.88	97.74
	11	1.30e-001	0.62	98.36
	12	9.54e-002	0.45	98.82
	13	7.71e-002	0.37	99.18
	14	6.25e-002	0.30	99.48
	15	4.41e-002	0.21	99.69
	16	2.44e-002	0.12	99.81
pcademo			-	

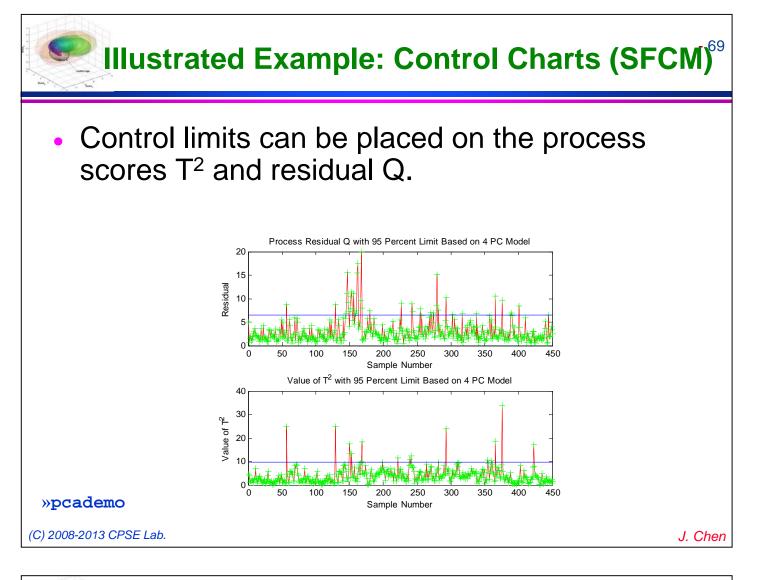


Fault Monitoring & Detection

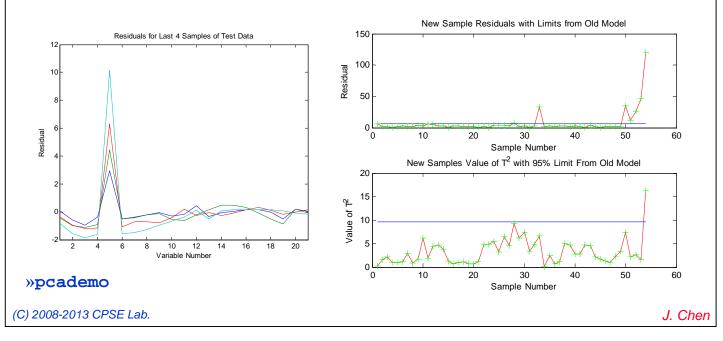




(C) 2008-2013 CPSE Lab.

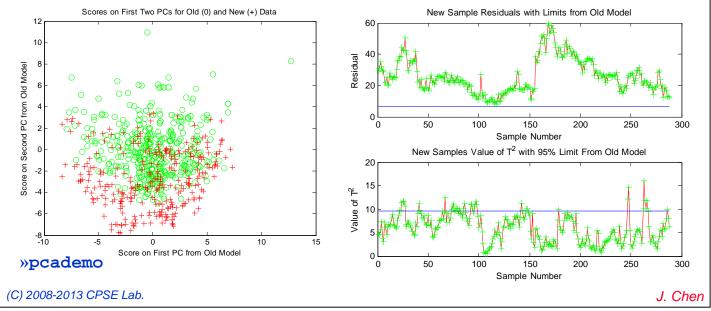


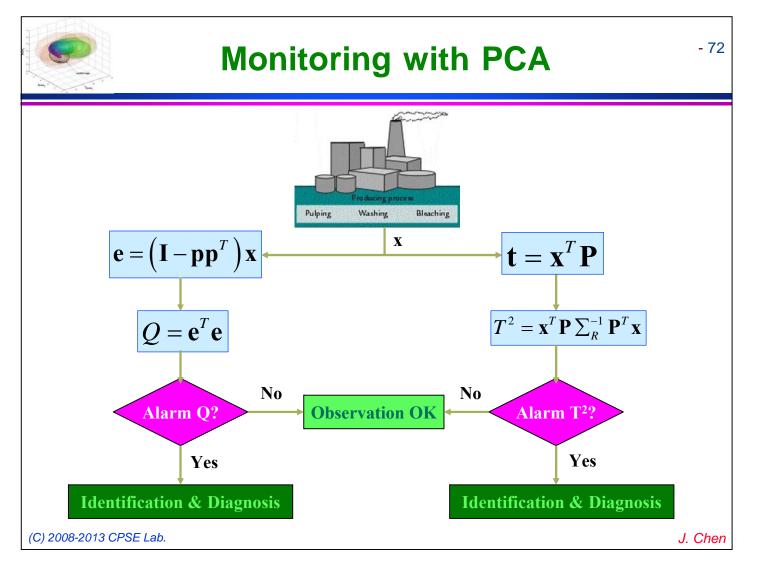
- At right near the end of the period, the Q residual goes over the 95% limit and stays there.
- The residual on the fifth variable is very large. It is an indication that the sensor has failed.



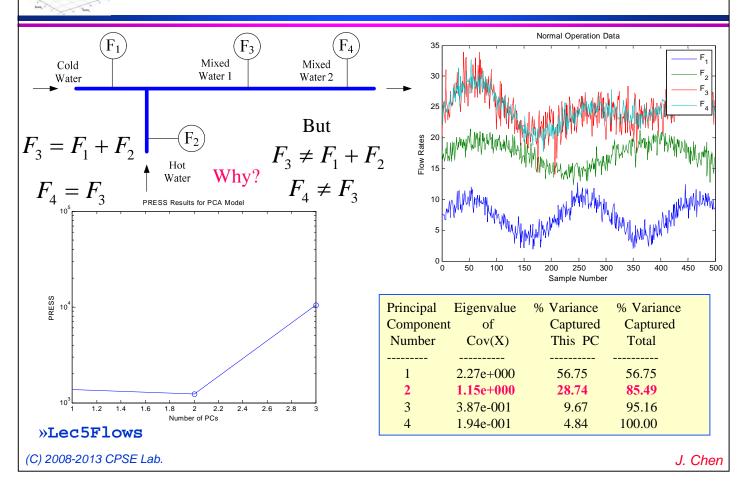
Illustrated Example: Test Set #2 (SFCM)⁷¹

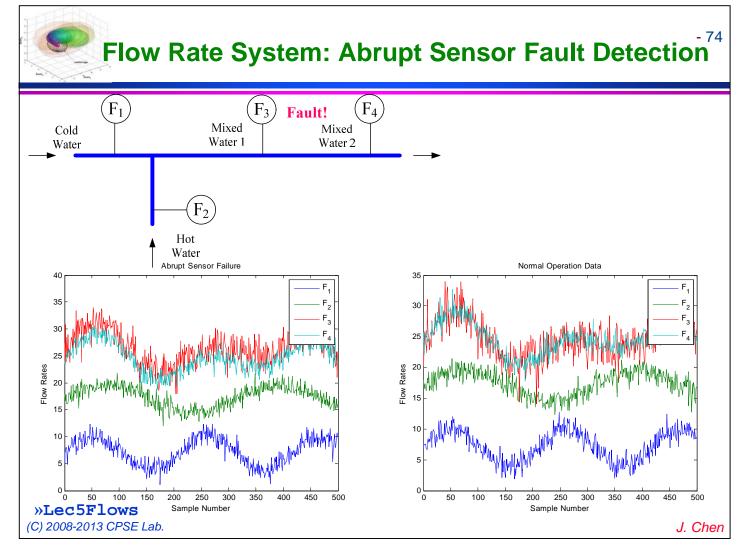
- The scores from set #2 don't fall between the limits calculated for Train. The residual is also relatively large.
- From the score plot, it is even more evident that set #2 is very different.
- This indicates that a major change has taken place in the process.

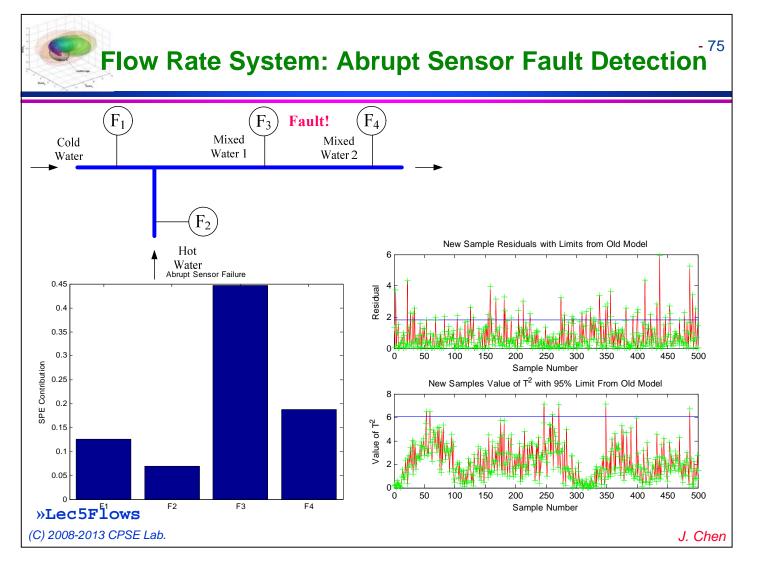


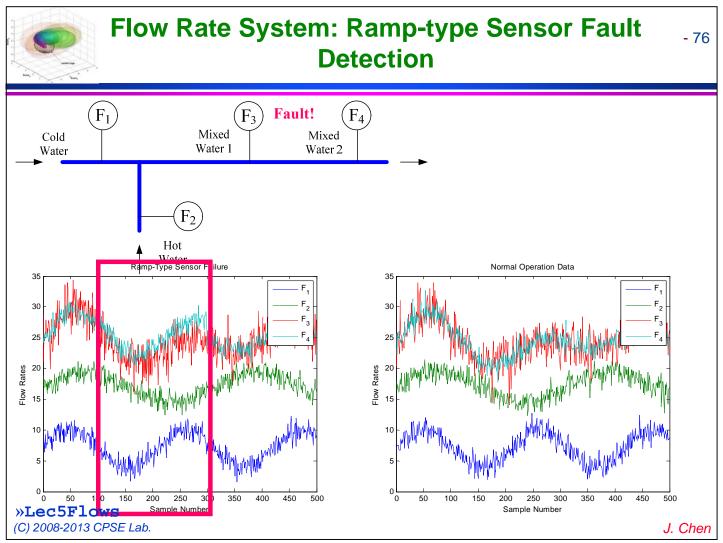


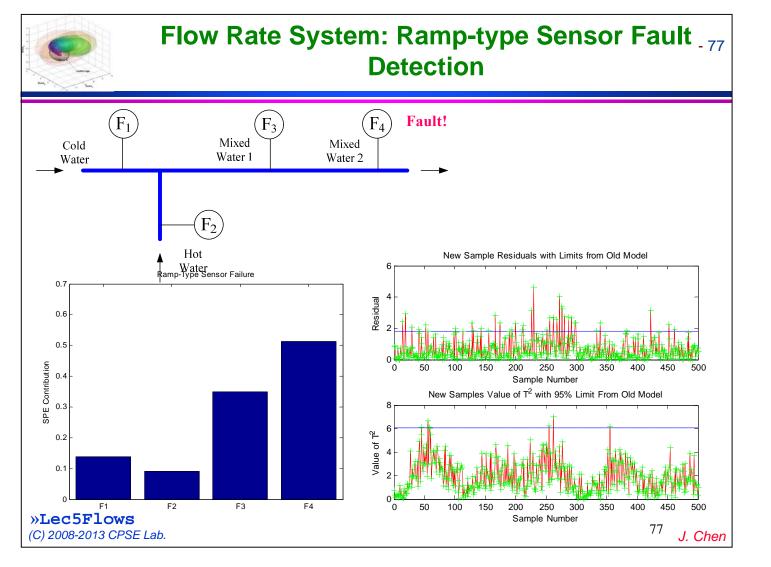
Illustrated Example: Flow Rate System⁻⁷³

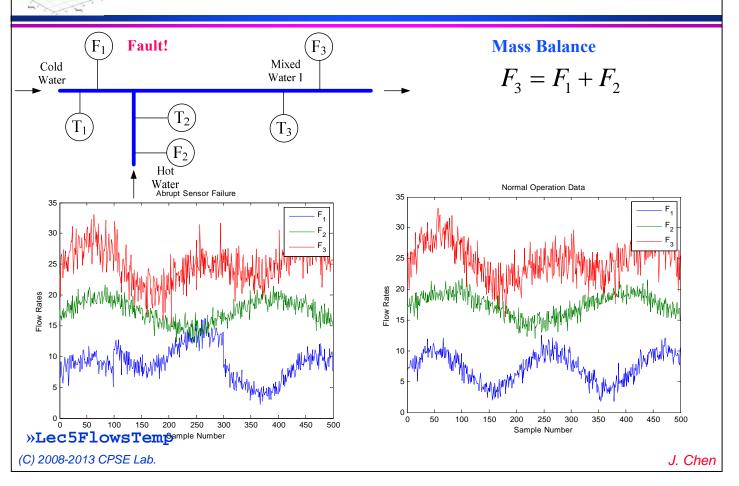




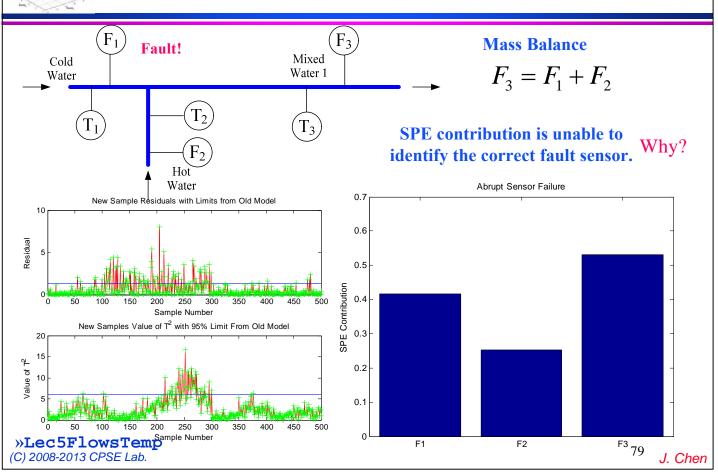




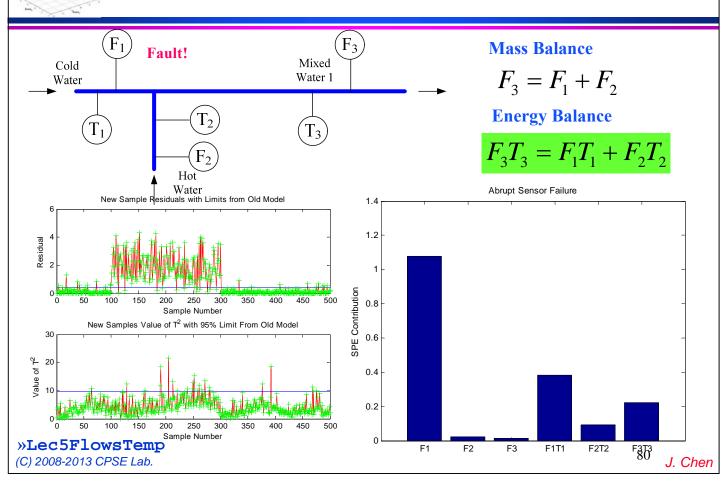




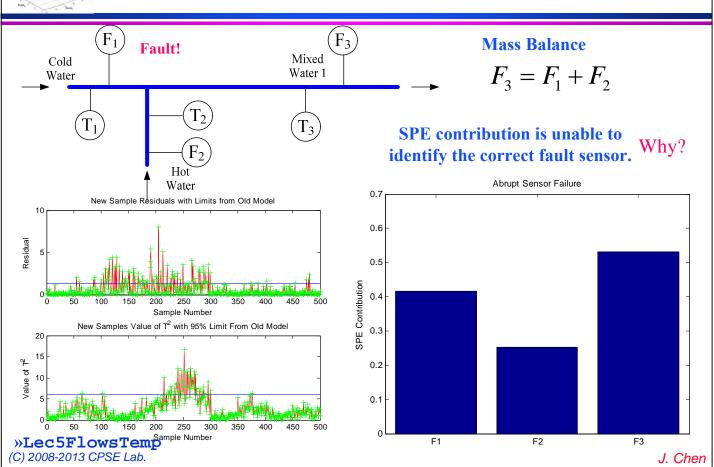
Limitation of PCA Model for MSPC⁻⁷⁹

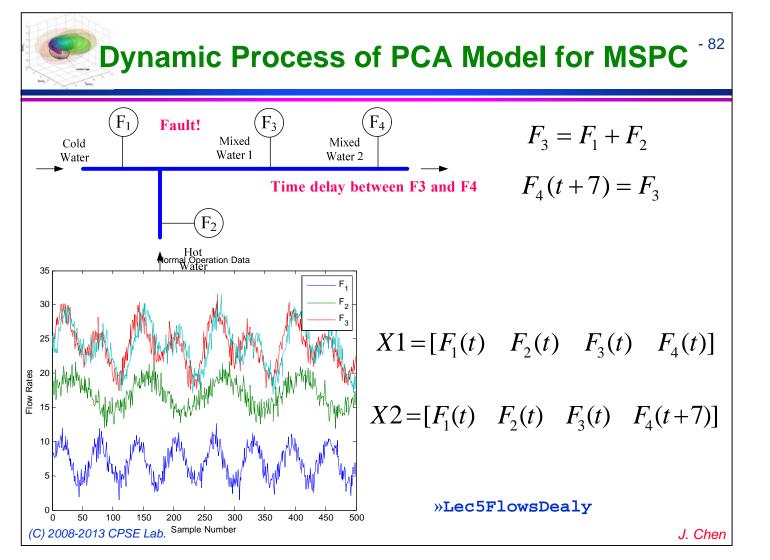


Limitation of PCA Model for MSPC⁻⁸⁰



Limitation of PCA Model for MSPC⁻⁸¹

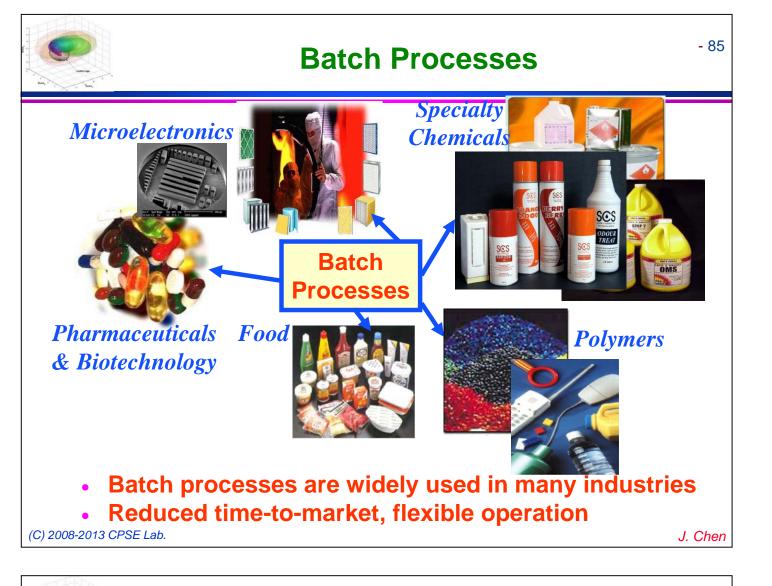




Dynamic Process of PCA Model for MSPC ⁸³										
Cold Water	Cold Mixed Mixed				F ₄ F ₃ = $F_1 + F_2$ F ₃ and F ₄ $F_4(t+7) = F_3$					
		$-\overline{F_2}$ Hot Water			is importan	correct PCA It to include It to time del	lagged			
X1 = [X]	$F_1(t)$ F_2	(<i>t</i>) $F_3(t)$	(f) $F_4(t)$]	X2=[H	$F_{1}(t) F_{2}(t)$	(t) $F_3(t)$	$F_4(t+7)$]			
Principal Componer Number	Eigenvalue nt of Cov(X)	% Variance Captured This PC	% Variance Captured Total	Principal Componen Number	Eigenvalue t of Cov(X)	% Variance Captured This PC	% Variance Captured Total			
1 2 3 4	2.47e+000 1.05e+000 3.22e-001 1.59e-001	61.68 26.31 <mark>8.05</mark> 3.97	61.68 87.98 96.03 100.00	1 2 3 4	2.66e+000 1.05e+000 1.71e-001 1.16e-001	66.45 26.36 4.28 2.90	66.45 92.81 97.10 100.00			
	lowsDeal	7					J. Chen			

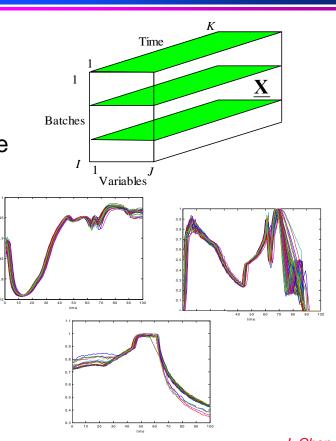
Monitoring for Batch Processes

- Batch processes, unlike continuous reactors which are most often used for high-throughput plants, are also frequently used in situations where production rates are low.
- Increasing quality and performance demands require to drive processes near limits
 - Batch polymerization reactors permit the production of polymer with a more narrow molecular weight distribution.
 - Batch fermentors use the lifecycle of the "bugs" to grow the organisms by feeding them substrate and letting them produce the desired chemical
- The batch reactor is quite flexible and can be used to produce a number of different products under a variety of conditions in the same vessel

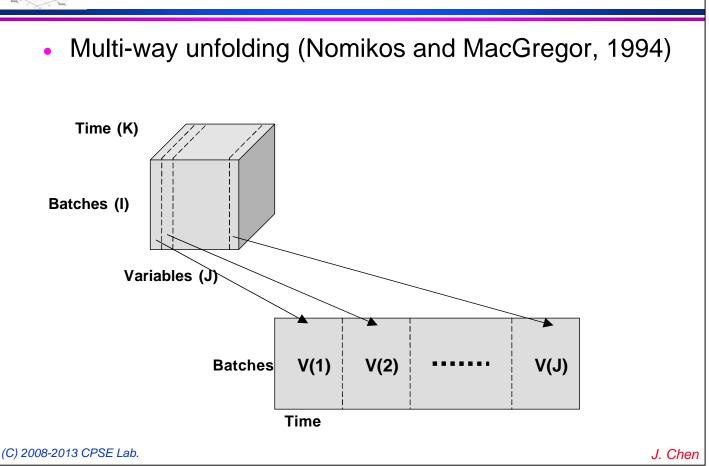


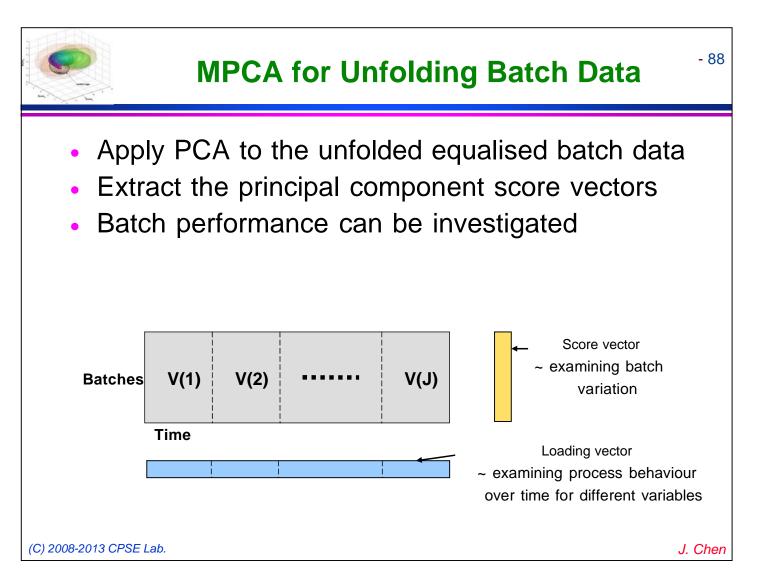
Batch Data Structure

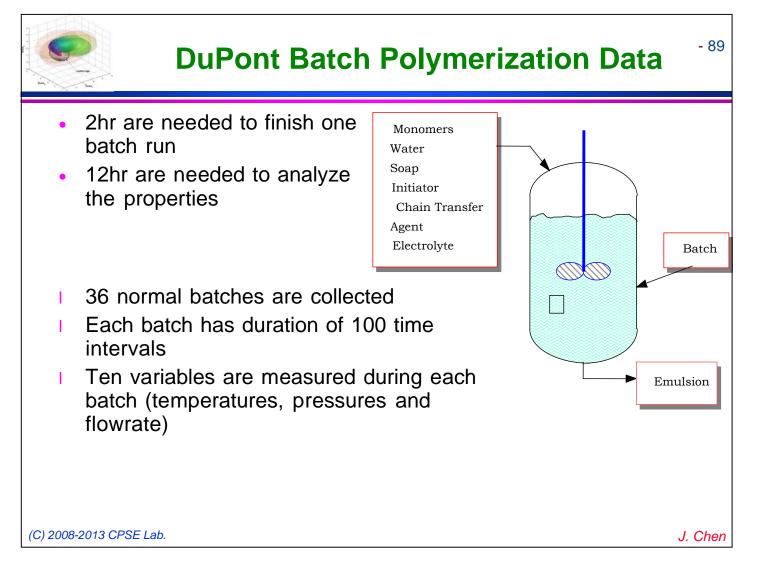
- Batch data presents a 3dimensional problem.
- With continuous processes it is just the relationships between the variables that are important.
- Batch data includes the add dimension of time since the entire past history of the trajectory contributes to the overall performance of the process.
- To analyze the data, the 3-D matrix must first be unfolded.

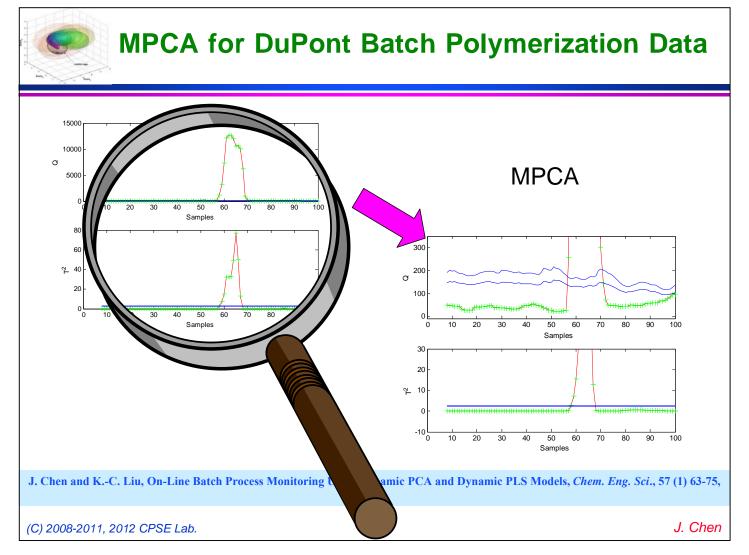


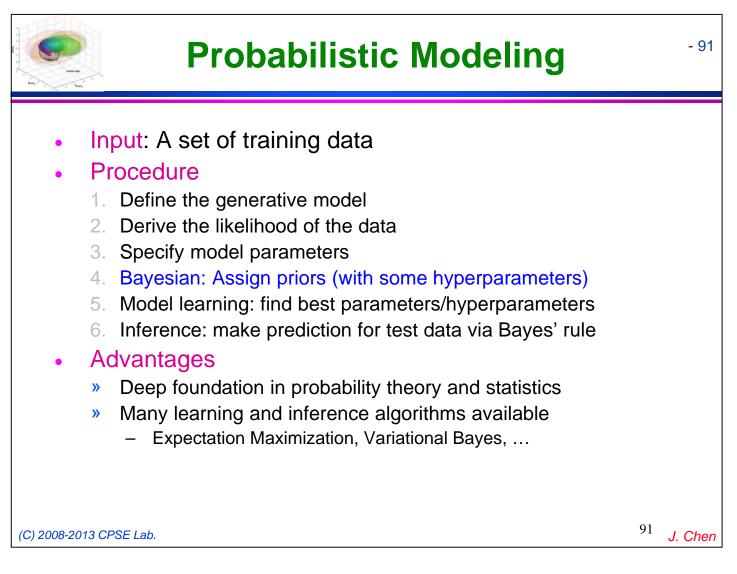
Unfolding Batch Data

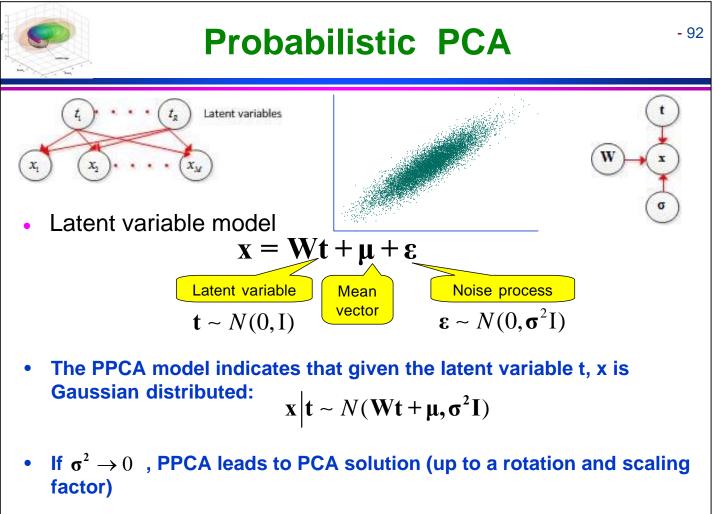




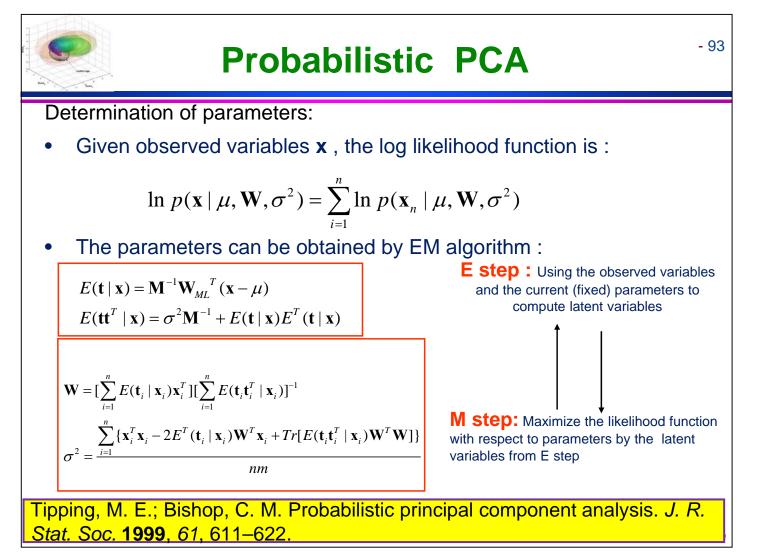


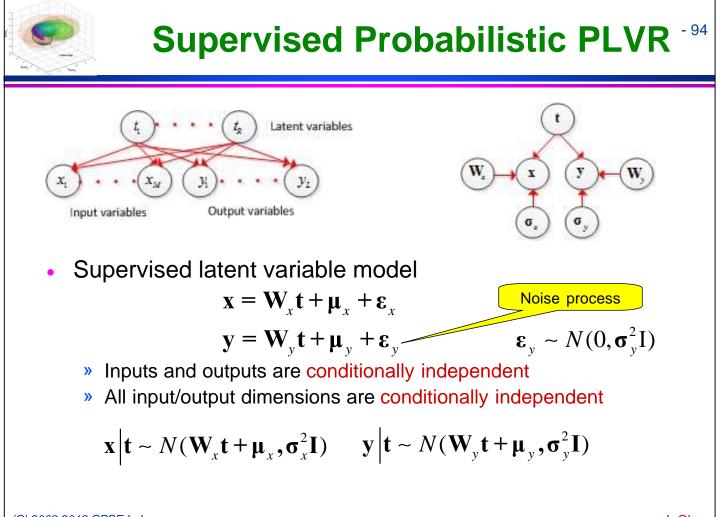




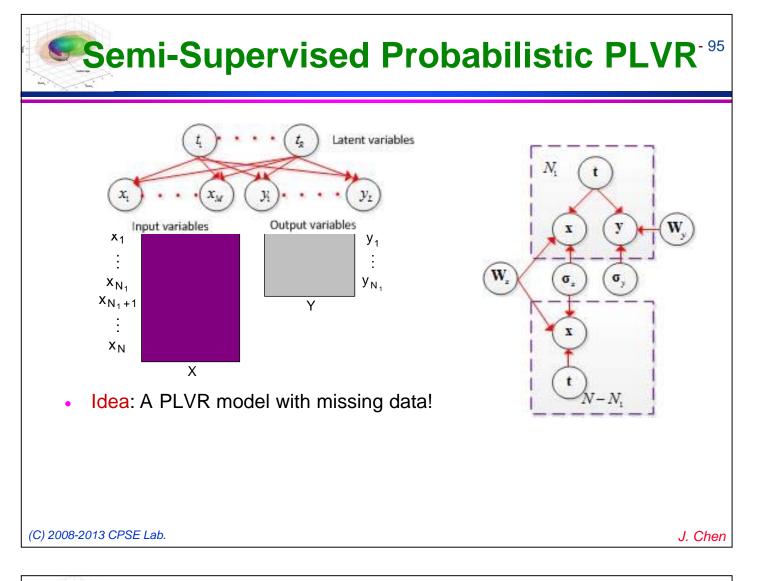


(C) 2008-2013 CPSE Lab.

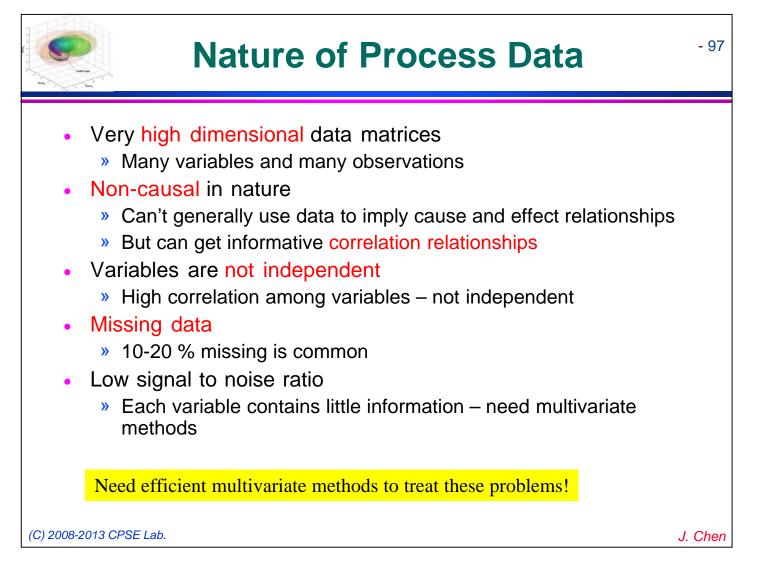




(C) 2008-2013 CPSE Lab.



method	advantages	disadvantages
ICA	(1) simple model structure, easy to understand	(1) difficult to determine the control limit
	(2) able to extract high-order data information	(2) the monitoring result may be unstable
	(3) provide latent variables that are independent to each other	(3) difficult to select the number of independent components
GMM	(1) simple model structure, easy to understand	(1) difficult to determine the number of local models
	 (2) be able to monitoring processes with multiple operating conditions 	(2) model training is complicated
	(3) can also handle the nonlinearity of the process	(3) may not be able to model all types of non-gaussian data
SVDD	 the developed model can be directly used for process monitoring 	(1) the kernel parameter of the model should be tuned
	(2) can handle both of the linear and nonlinear process data	(2) the tighter control limit of SVDD may cause more false alarms
	(3) has no assumption of the data distribution	(3) process analyses and interpretations become more difficult



Conclusion

- Clustering and projection are important tasks in DM
- Probabilistic modeling would be a good way to apply to both tasks
- Joint clustering-projection models
 - » Principled way to iterate clustering and projection
 - » Convergence is guaranteed, with better performance